

Advances in Networks
2022; 10(2): 15-30

http://www.sciencepublishinggroup.com/j/net

doi: 10.11648/j.net.20221002.11

ISSN: 2326-9766 (Print); ISSN: 2326-9782 (Online)

Analysis of Docker Networking and Optimizing the
Overhead of Docker Overlay Networks Using OS Kernel
Support

Yusuf Haruna
*
, Abdulmalik Ahmad Lawan, Kamaluddeen Ibrahim Yarima,

Muhammad Mahmoud Ahmad, Mustapha Abdulkadir Sani

Department of Computer Science, Kano University of Science and Technology, Wudil, Nigeria

Email address:

*Corresponding author

To cite this article:
Yusuf Haruna, Abdulmalik Ahmad Lawan, Kamaluddeen Ibrahim Yarima, Muhammad Mahmoud Ahmad, Mustapha Abdulkadir Sani.

Analysis of Docker Networking and Optimizing the Overhead of Docker Overlay Networks Using OS Kernel Support. Advances in

Networks. Vol. 10, No. 2, 2022, pp. 15-30. doi: 10.11648/j.net.20221002.11

Received: April 8, 2022; Accepted: May 14, 2022; Published: October 17, 2022

Abstract: The superior performance of lightweight virtualization with containers over traditional virtualization enables

the implementation of scalable systems and multi-tier/distributed networks. Containers supports the creation of dedicated

network overlays, spanning over several virtual machines (VMs) or physical hosts to interconnect application fragments.

Hence, there is a need to understand the comparative performance of various interconnection solutions in terms of needed

resources (CPU, RAM, and networking). In this work, we use a variety of applications to benchmark the performance of

different container interconnection solutions. Accordingly, we experimented with four applications namely Memcached,

Nginx, PostgreSQL, and iperf3. Each of these applications was installed inside a container in one VM and their

corresponding benchmarks (test client) in a separate container in another VM in order to benchmark the performance of the

applications. The VMs were interconnected using four modes namely: host, NAT, Docker default overlay (VXLAN) and

weave. The experimental results revealed superior performance in host mode, followed by NAT and the overlay networks

(VXLAN and weave) which have the least performance due to packet encapsulation. In each case, sar was used to monitor

the CPU utilization. We were able to reduce the overhead of the two overlay networks using RPS (Receive Packet Steering)

technique because they brought solutions to some of the problems faced when connecting containers using host and NAT

modes in the cloud.

Keywords: Virtualization, Container, Virtual Machine, Network

1. Introduction

Virtualization technology is a computing breakthrough that

enables the deployment of applications on virtual (rather than

physical) hardware resources [1]. Several approaches were

proposed in optimizing the performance of this technology

when deployed as a full-fledged Operating System

(traditional virtual machines) or container-based

virtualization. Exemplary studies focuses on addressing how

many virtual machines (VMs) can be consolidated on one

physical machine, optimizing VMs startup time, and

networking multiple VMs among others [2]. Particularly,

container-based virtualization provides lightweight

virtualization environment, which works by sharing the

kernel and the libraries of the original (host) operating

system among the running applications. It works by running

them in an isolated namespace called container. A namespace

is a way of logically separating processes along different

dimensions: Network, IPC, User, PID, Mount or UTS

namespace. Unlike the traditional VMs, containers enables

16 Yusuf Haruna et al.: Analysis of Docker Networking and Optimizing the Overhead of

Docker Overlay Networks Using OS Kernel Support

partitioning of hardware resources to users in order to

speedup deployment of applications [2]. The most popular

containerization solutions currently in the market is Docker

[3, 4].

However, for an efficient computation to take place, the

running applications within the containers need to

communicate with each other either within the same host

or between multiple hosts. These communications are of

critical concern due the fact that, the performance of a

system is significantly affected by the characteristics of

the communication [5]. Hence, the need to study and

analyze different container networking models in order to

make good choices of the right model to use on a given

system.

The present study aimed at analyzing the performance of

Docker container networking in single Virtual Machine

(VM) and multiple VM scenarios. Accordingly, a number of

benchmarks including Sparkyfish [6], Sockperf [7] and

iperf3 [8] will be used in carrying out the analysis.

Furthermore, to understand the performance of different

Docker Networking solutions, we will experiment on four

distinct modes of connecting containers in the cloud (host,

NAT [9], Docker default overlay and weave). We will build

a realistic testbed by selecting three popular cloud

applications and deploying them into Docker containers to

benchmark their performance in the four modes and

optimize the overhead of the overlay Networks using

OS/hardware support.

2. Literature Review

Docker is an open-source software produced by a team of

researchers at Docker Inc. It allows automation of

applications deployment into containers and it was designed

in such a way that application deployment engine is added on

top of a virtualized environment that allows execution of

containers [3, 4]. Figure 1 shows a comparison between

traditional virtualization and lightweight virtualization using

Docker. Traditional virtualization uses a hypervisor for

creating the virtual machines (guest OSs); where each of

them has its own separate libraries and binary files. On the

other hand, lightweight virtualization using Docker allows

running of applications in containers. The containers share

the kernel and other files of the same OS.

Figure 1. Traditional Virtualization Vs Lightweight Virtualization (Source: https://www.docker.com/).

Containers are such an environment that can host several

processes and each process can have its network stack.

Containers incur less overhead when compared with virtual

machines. Several applications that are frequently launched

and terminated within a second can be deployed using

containers. There are different modes to connect containers

that are organized in different scenarios in order to enable

communications between the running applications either in a

single VM or between multiple VMs [2]. Indeed, in many

deployment scenarios, containers are deployed within VM

and not directly on the host OS because containers do share

the host kernel and any breach in the containerization engine

might compromise the whole machine.

Several studies were carried out to understand how

container-based virtualization works. However, most of the

studies did not approached the problem from networking

point of view. For instance, Xavier et al. [10] conducted a

comparative evaluation on a high performance computing

(HPC) environments based on Memory Performance, Disk

Performance, Network Performance (on a very narrow

perspective), and Performance Overhead. Similarly, Lee et

al. [11] studied the impact of container virtualization on

network performance with restriction on IoT devices. Suo et

al. [2] studied and analyzed the performance of Docker

container networking in two scenarios; both containers are

on a single VM and on multiple VMs. The first

experimental scenario was carried out using bridge mode,

container mode and host mode relative to without container

mode with a number of benchmarks that perform an active

test. The second experimental scenario was carried out

using host mode, NAT and overlay networks (Docker

default overlay, weave [12], flannel [13] and calico [14].

Simple Benchmarks (bulk transfer tools similar to iperf)

that perform active test were also used. The comparative

 Advances in Networks 2022; 10(2): 15-30 17

findings of the study are crucial when deciding which mode

to use in networking containers. The study findings

revealed that the overlay networks used in the multiple VM

case have some significant overhead on the performance of

the network due to packet encapsulation. Nevertheless,

these overlay networks have brought solutions to some of

the problems (for instance port contention, scalability

problem and so on) faced when connecting containers using

host and NAT modes, hence, the overlay networks are

highly used in networking containers in the cloud. The

comparative findings of the study are crucial when deciding

which mode to use in networking containers. However, the

study failed to highlight ways to reduce the overhead of the

overlay networks despite their importance, and was

conducted without deploying some applications into the

containers when carrying out the experiments. Accordingly,

a recent study by Zhuo et al. [15] used OS kernel support to

reduce the overhead of one of the overlay networks (weave)

and experimented with some applications deployed into

containers. The study utilized only Sparkyfish and Sockperf

benchmarks in the analysis process.

In the present study, we extended the work of Zhuo et al.

[15] by considering the case of containers running inside

VMs, deploying some popular cloud applications to

understand the performance of Docker networking modes,

and involving an additional networking mode based on

Network Address Translation (NAT). Moreover, apart from

the weave overlay network, we built a testbed and further

experimented with Docker default overlay network which

uses virtual extensible LAN (VXLAN) [16] tunnel in

connecting containers. Furthermore, we evaluate the

experimental performance of the four distinct modes (Host,

NAT, Docker default overlay (VXLAN) and weave) by

deploying applications like Memcached [17, 18], Nginx [19,

20] and PostgreSQL [21, 22, 23] together with their

benchmarks. The experimentation was carried out with iperf3

and we approached overhead optimization using RPS

(Receive Packet Steering) by testing on PostgreSQL.

3. Method

3.1. Research Motivation

Many applications are being deployed in the cloud

nowadays, which brought about quite a number of

improvements to modern days computing. This enables

companies to focus more on their core business for better

satisfaction of their clients instead of spending more

resources on the computing infrastructure and their

maintenance. As of today, a significant fraction of companies

uses cloud-computing solutions for their work. They might

use a third party public cloud solutions like Amazon web

services, Microsoft Azure etc. or even private cloud solutions

for example with Openstack to achieve their business target.

These developments are possible because of the

virtualization technology. Container-based virtualization

being a lightweight virtualization (which behaves by

partitioning the hardware resources) has more advantages

than traditional virtualization (which behaves like a full

Operating System). These advantages and many other make

computing easier and cheaper nowadays. However, this

development cannot be possible without good performance

of communication between containers, hence, it is of great

importance to study and analyze the container networking

performance.

An emblematic example is how search engines use

container-based virtualization, for instance, google search

engine launches almost 7,000 containers every second [3]

and these containers communicate with each other in order to

deliver the result of the google searches. This obviously

raises the need for good networking performance.

3.2. Research Procedure

We tested the performance of Docker container networking

in single Virtual Machine (VM) and multiple VM scenarios.

We used three distinct benchmarks in carrying out the

analysis including Sparkyfish, Sockperf as used in [15] and

we extended with iperf3. Therefore, in the present study we

adapted and extended the research procedure reported in [15]

as follows:

1) We evaluated the performance of different Docker

Networking solutions based on four modes (host, NAT,

Docker default overlay and weave) of connecting

containers in the cloud.

2) We built a realistic testbed by selecting three popular

cloud applications (and their benchmarks) and

deploying them into Docker containers to benchmark

their performance in the four modes. We also performed

similar analysis with iperf3, which performs an active

measurement.

3) We obtained comparative results by testing our testbed

and monitor system level performance with sar (System

Activity Reporting) [24] which is a Unix System V-

derived system monitor command.

4) We also utilized statistical tools like boxplot and

standard deviation in understanding the level of

variability of the results (thirty samples in each case) for

statistical significance.

5) We approached overhead optimization of the overlay

networks using OS/hardware support.

3.3. Experimental Settings

We carried out the experiments on a HP machine which

has 12GB memory, Intel (R) core (TM) i7-6500U CPU @

2.50GHz (4 CPUs) approximately 2.6GHz processor, and

WDC WD10JPVX-60JC3T0 1TB hard disk. We used

Ubuntu 16.04 and Linux kernel 4.15.0-45-generic as both

host and guest OS. The hypervisor was KVM version 2.5.0

where the VMs were assigned with the virtio NIC driver,

2vCPUs and 4GB RAM each. Docker version was 18.09.2

Community Edition and weave version was 2.5.0.

For each test, a container was created using Docker [3] in

one Virtual machine (VM) where the application was

18 Yusuf Haruna et al.: Analysis of Docker Networking and Optimizing the Overhead of

Docker Overlay Networks Using OS Kernel Support

installed and the corresponding benchmark was installed in

another container in a different virtual machine. When the

test is going on, sar (system activity reporting) also runs in

parallel in order to monitor the performance of the system

(CPU utilization in our case), a draft of this configuration is

shown in Figure 2. The two VMs were connected using one

of the four modes (host, NAT, VXLAN and weave modes).

There are two ways of deploying containers either on a VM

because of security for example by cloud provider or on a

physical machine for example by Google. In this study, we

carried out the experiments by deploying the containers in

VMs.

Figure 2. Virtual Machines configuration in a physical machine.

4. Results and Discussion

4.1. Iperf3

We collected a total of thirty (for each mode) samples of

the result by running the shell scripts of our testbed.

Consequently, a container was created with iperf3 installed

and the server was started in one VM followed by the client

in another VM on the four modes of container connections

between multiple hosts. We carried out the experiments

with the two popular protocols TCP (Transmission Control

Protocol) and UDP (User Datagram Protocol). We used bar

plots to represents the average and error bars (which denote

the standard deviations) to analyze the results and boxplots

to visualize the level of variability of the results. Table 1

shows the average and standard deviation of the TCP

throughput in Mbps while Table 2 shows that of UDP. Host

mode achieved the highest throughput followed by NAT

which dropped by 8% when compared with host mode,

VXLAN and weave have the least throughput with a drop

of 77% and 82% respectively, in the case of TCP. Moreover,

in the UDP case NAT dropped by 52% while VXLAN and

weave dropped by 66% and 70% respectively. The

following figures show the bar plots (Figure 3) and

boxplots (Figure 4) of both TCP and UDP results. The

results have less variability especially in VXLAN and

weave modes. Figure 5 shows the CPU utilization of the

client and server where the client consumed more CPU than

the server except in weave mode. In both cases, most of the

CPU was spent in the kernel part more than the user part

and this is in line with the fact that it is the kernel that

actually does most of the job of packet sending, which is

what iperf does. Both the client and server have very less

I/O in all of the modes.

Table 1. Iperf3 TCP throughput.

Modes
TCP throughput in Mbps

Average Standard deviation

Host mode 13849.866 634.865

NAT 12739.733 620.433

VXLAN 3148.266 422.759

Weave 2416.0 93.614

Table 2. Iperf3 UDP throughput.

Modes
UDP throughput in Mbps

Average Standard deviation

Host mode 4113.066 129.206

NAT 1979.466 70.493

VXLAN 1375.466 62.582

Weave 1217.066 75.830

 Advances in Networks 2022; 10(2): 15-30 19

Figure 3. Iperf3 throughput.

Figure 4. Iperf3 throughput boxplot.

Figure 5. CPU utilization of iperf3 client and server.

4.2. Memcached

We collected a total of thirty (for each mode) samples of

the result by running the shell scripts of our testbed. It

created the container, installed memcached server inside and

started the server in a container on one VM. It then installed

20 Yusuf Haruna et al.: Analysis of Docker Networking and Optimizing the Overhead of

Docker Overlay Networks Using OS Kernel Support

memtier benchmark in another container and start the test on

a separate VM. The VMs were connected using one of the

four modes of container connections in each run of the

experiments. We carried out the experiments using the two

protocols of memcached, which are memcached text and

memcache binary. We used bar plot with error bars (to

denotes the standard deviation) to analyze the result and

boxplot to visualize the level of variability of the results.

For the memcached text protocol, the following tables

show the average throughput in Kbps and standard deviation

(Table 3), average latency in millisecond and the

corresponding deviation (Table 4). Host mode achieved the

highest throughput followed by NAT which dropped by 23%

compared to host but VXLAN and weave recorded almost

same throughput they both dropped by about 34%.

Furthermore, host has the least latency followed by NAT

which increased by 26% then VXLAN and weave with an

increase of 49% and 48% respectively. Figure 6 shows the

bar plot of the throughput and latency while figure 7 shows

the corresponding boxplots where less variability was

observed with few outliers. Table 5 shows the mean and

standard deviation of SET operation latency also in

millisecond while Table 6 shows the latency of GET

operation. The distribution of latency for Memcached SET

and GET operations is shown in figure 8 where the two

overlay network lines overlapped in both cases which means

the performance of the overlay networks is almost the same.

Figure 9 shows the CPU utilization of the client and server

where the client in which the benchmark (memtier

benchmark) was installed consumed more CPU than the

server (running the memcached server) except in VXLAN

mode. The client CPU consumption in the kernel is almost

equal to that of the user in all of the four modes and has very

low I/O. On the other hand, the server spent more time in the

kernel part than the user part in all of the four modes except

VXLAN.

Figure 6. Memcached throughput and latency with memcache text protocol.

Figure 7. Memcached throughput and latency boxplot with memcache text protocol.

 Advances in Networks 2022; 10(2): 15-30 21

Figure 8. Distribution of latency for Memcached SET and GET operations, illustrating tail latency effects. The two overlay network lines overlap.

Figure 9. CPU utilization of memcached client and server.

Table 3. Memcached throughput with memcache text protocol.

Modes
Throughput in Kbps

Average Standard deviation

Host mode 11688.304 2238.144

NAT 9149.296 1222.44

VXLAN 7776.544 1066.856

Weave 7790.952 670.744

Table 4. Latency for responding to Memcached command with memcache text protocol.

Modes
Latency in msec

Average Standard deviation

Host mode 4.1105 0.5641

NAT 5.1807 0.469

VXLAN 6.1569 0.9858

Weave 6.0802 0.7295

Table 5. Latency of Memcached SET operation with memcache text protocol.

Modes
SET latency in msec

Average Standard deviation

Host mode 4.506 1.029

NAT 5.573 0.774

VXLAN 6.781 1.676

Weave 6.730 1.182

22 Yusuf Haruna et al.: Analysis of Docker Networking and Optimizing the Overhead of

Docker Overlay Networks Using OS Kernel Support

Table 6. Latency of Memcached GET operation with memcache text protocol.

Modes
GET latency in msec

Average Standard deviation

Host mode 4.07 0.549

NAT 5.14 0.470

VXLAN 6.09 0.93

Weave 6.01 0.759

Moreover, for the memcache binary protocol, Table 7

shows the average throughput in Kbps and their standard

deviation while Table 8 shows the latency for responding

to the memcached command in millisecond and the

standard deviation for all the modes. As usual host mode

recorded the highest throughput followed by NAT which

dropped by 17% and the two overlay networks have the

least throughput where VXLAN dropped by 30% and

weave dropped by 29%. Also in the latency of the

memcached server response, the order remain the same.

NAT had an increase of of 20% when compared with host

mode because in case of latency the lower the better.

VXLAN increased by 42% while weave increased by 40%.

Figure 10 shows the bar plots of the throughput and

latency with error bars denoting standard deviation. On

the other hand, Figure 11 shows the corresponding

boxplots, the results did not get much variability and there

are few outliers. Table 9 shows the mean and standard

deviation of SET operation latency also in millisecond

while Table 10 shows the latency of GET operation. The

distribution of the latency for Memcached SET and GET

operations is shown in Figure 12 where the two overlay

network lines overlapped in both cases which means the

performance of the overlay networks is almost the same.

Figure 13 shows the CPU utilization of the client and

server. On the server part, there is no much consumption

of the CPU resource while in the client that is the

benchmark part, the consumption is a bit high. There is no

much difference between the CPU consumption of the

overlay networks and the rest of the modes.

Table 7. Memcached throughput with memcache binary protocol.

Modes
Throughput in Kbps

Average Standard deviation

Host mode 15168.813 2214.971

NAT 12488.656 1532.746

VXLAN 10564.314 1134.282

Weave 10699.154 962.507

Table 8. Latency for responding to Memcached command with memcache binary protocol.

Modes
Latency in msec

Average Standard deviation

Host mode 4.471 0.478

NAT 5.390 0.493

VXLAN 6.365 0.572

Weave 6.268 0.510

Table 9. Latency of Memcached SET operation with memcache binary protocol.

Modes
SET latency in msec

Average Standard deviation

Host mode 4.983 0.972

NAT 5.691 0.546

VXLAN 6.812 1.044

Weave 6.723 0.469

Table 10. Latency of Memcached GET operation with memcache binary protocol.

Modes
GET latency in msec

Average Standard deviation

Host mode 4.418 0.486

NAT 5.359 0.495

VXLAN 6.319 0.547

Weave 6.221 0.538

 Advances in Networks 2022; 10(2): 15-30 23

Figure 10. Memcached throughput and latency with memcache binary protocol.

Figure 11. Memcached throughput and latency boxplot with memcache binary protocol.

Figure 12. Distribution of latency for Memcached SET and GET operations, illustrating tail latency effects. The two overlay network lines overlap.

24 Yusuf Haruna et al.: Analysis of Docker Networking and Optimizing the Overhead of

Docker Overlay Networks Using OS Kernel Support

Figure 13. CPU utilization of memcached client and server with memcache binary protocol.

4.3. Nginx

1KB HTML file: A total of thirty (for each of the four modes)

samples were collected by setting the throughput to 3K

requests/second. Table 11 shows the average of the results and

their standard deviation. Figure 14 shows the bar plot (with the

error bar denoting the standard deviation) and the boxplot

showing the level of variability of the results. Host mode

recorded the least latency followed by NAT with an increase

of 16% then weave and VXLAN with an increase of 24% and

30% respectively. Figure 15 shows the CPU utilization of the

client (wrk) and server (nginx) where they both have almost

the same CPU consumption in which kernel part is more than

the user part and I/O is very low in all of the modes.

Figure 14. 3K reqs/sec Nginx 1KB latency.

Figure 15. CPU utilization of Nginx client and server in 1KB file.

 Advances in Networks 2022; 10(2): 15-30 25

Table 11. Nginx 1KB html file latency.

Modes
Latency in msec

Average Standard deviation

Host mode 2.228 0.176

NAT 2.603 0.247

VXLAN 2.776 0.320

Weave 2.918 0.344

1MB HTML file: thirty samples were collected by setting the

throughput to 3K requests/second for each experiment on the

four modes. Table 12 shows the average of the results and their

standard deviation. Figure 16(a) shows the bar plot (with the

error bar denoting the standard deviation) and the boxplot (b)

showing the level of variability of the results. Host mode has

the least latency followed by NAT with an increase of 5% then

weave and VXLAN with an increase of 26% and 24%

respectively. Figure 17 shows the CPU utilization of the client

(wrk2 benchmark) and server (nginx), similar to 1KB file, they

almost have the CPU consumption in all the four modes.

Table 12. 3K reqs/sec Nginx 1MB html file latency.

Modes
Latency in msec

Average Standard deviation

Host mode 2.266 0.258

NAT 2.385 0.150

VXLAN 2.864 0.184

Weave 2.827 0.400

Figure 16. 3K reqs/sec Nginx 1MB file latency.

Figure 17. CPU utilization of Nginx client and server in 1MB file.

For the latency of the two html files (1KB and 1MB), we

expect to see much difference in the results with higher

values on the 1MB. We tried changing the configuration of

the nginx server and some other options but we keep

obtaining the same results. Nevertheless, we intended to do

more work on this part in our future work.

4.4. PostgreSQL

We collected thirty samples of the results by executing the

scripts of our testbed on each of the four modes. We carried

out the experiments by setting the benchmark i.e pgbench to

generate 300 transactions per second and then later stress

26 Yusuf Haruna et al.: Analysis of Docker Networking and Optimizing the Overhead of

Docker Overlay Networks Using OS Kernel Support

more the system by generating 500 transactions per second.

For the first case, Table 13 shows the average of the results

and their standard deviation. Figure 18(a) shows the bar plot

(with the error bar denoting the standard deviation) and the

boxplot (b) showing the level of variability of the results.

Host mode recorded the least latency followed by NAT

(which increased by 8.5%) then weave with an increase of

42% and VXLAN achieved the highest latency with an

increase of 85%. Figure 19 shows the CPU utilization of the

client and server where the client which is the benchmark

(pgbench) has more consumption in the user than the kernel

part and a very low I/O. On the other hand, the server has

kernel part almost same as that of the user and I/O which is

big compared to other applications. This is because

postgreSQL has more disk operations than the rest of the

applications as the data is stored on disk.

Table 13. PostgreSQL latency on 300 trans/sec.

Modes
Latency in msec

Average Standard deviation

Host mode 93.197 31.443

NAT 101.206 45.058

VXLAN 172.694 63.472

Weave 132.604 34.330

Figure 18. PostgreSQL latency on 300 trans/sec.

Figure 19. CPU utilization of postgresql client and server.

Moreover, for the 500 transactions per second, the average

and standard deviation of the PostgreSQL latency for each of

the four modes are shown in Table 14. Similar to the previous

cases, host has the best latency. It was followed by NAT with

an increase of about 3%. VXLAN increased by 34% while

weave increased by 20%. Figure 20 shows the bar plots and

the corresponding boxplots where NAT and VXLAN have

variability a bit more than host and weave whose variability

are closed to the 300 transactions results. The CPU utilization

of the client and server is shown in Figure 21 where the

benchmark (client) has less utilization of the CPU (especially

in the two overlay networks) than in 300 transactions case.

On the server side, the utilization is almost the same as that

of the 300 transactions scenario. Stressing the system does

 Advances in Networks 2022; 10(2): 15-30 27

not have much impact on the CPU utilization. It has more impact on the performance of the network.

Figure 20. PostgreSQL latency on 500 trans/sec.

Figure 21. CPU utilization of postgresql client and server.

Table 14. PostgreSQL latency on 500 trans/sec.

Modes
Latency in msec

Average Standard deviation

Host mode 146.454 49.352

NAT 150.503 43.897

VXLAN 197.007 54.227

Weave 175.468 49.913

4.5. Preliminary Results of the Reduced Overhead of Some

Applications

The experimental results reported from the three

applications and iperf3 revealed the best performance in the

host mode among the four modes of Docker networking in all

the applications. It was followed by NAT which had a few

percentage of performance drop compared to host mode. The

two overlay networks (Docker default overlay and Weave)

have the worst performance in all scenarios. Nevertheless,

overlay networks have brought solutions to some of the

problems faced when host and NAT modes are used for

connecting containers in the cloud. Some of these problems

are: port contention, scalability problem and so on. It is thus

of great importance to improve their performance. We used

RPS in achieving this objective by taking advantage of the

nowadays multi-processor systems by balancing the loads to

the available CPUs. We focused on one of the three

applications, which is PostgreSQL in order to reduce the

overhead on its performance. We reduced the latency of this

application by activating the RPS technique on the NICs of

our system when carrying out the experiments.

We carried out the experiments with 300 transactions per

second when making a request to the PostgreSQL server.

Table 15 shows the average and standard deviation of the

thirty samples collected. Docker default overlay (VXLAN)

had a performance gain of 26.6% and Weave had 23% in the

latency of the communication between the server and the

benchmark. Figure 22(a) can be used to visualize this result

where the bars denote the average and error bars denote the

28 Yusuf Haruna et al.: Analysis of Docker Networking and Optimizing the Overhead of

Docker Overlay Networks Using OS Kernel Support

standard deviation while (b) shows the corresponding

boxplot where the results did not have much variability. This

is a significant improvement in the performance in which

weave had almost same performance with NAT. Moreover,

Figure 23 shows the CPU utilization of the client (pgbench

benchmark) and server (PostgreSQL server). The server

consumed a bit more of CPU resource compared to non RPS

setting especially in VXLAN. This can be due to

involvement of more than one CPU in the process.

To stress more the system, we also carried out similar

experiment with 500 transactions per second. In this case, we

were able to improve the performance of VXLAN by 11.4%

and weave by 22.8%. Table 16 shows the average and

standard deviation of the thirty samples collected. Figure

24(a) can be used to visualize the result with the bars

representing the average and errors bar denoting the standard

deviation while (b) display the corresponding boxplot. Figure

25 shows the CPU utilization of the client and server in

which VXLAN consumed a bit more CPU than in non-RPS

setting while weave consumed less on the server side. On the

client side, both of the two overlay networks consumed a bit

more CPU than on non RPS and this could be due to the fact

that more CPUs were involved in the process. One thing

unique about our work is reducing the overhead of Docker

default overlay network (VXLAN) in addition to Weave

using the RPS technique. Other works like [15] reduced the

overhead of only Weave. Some works like [2] performed an

analysis of different docker networking modes which reveals

the modes that have the best performance, this work does not

optimize the overhead of overlay network(s) despite of the

fact that overlay networks have solved some of the problems

faced when using host and NAT modes. Our work does not

optimize the overhaed of only VXLAN but that of both

VXLAN and Weave.

Table 15. PostgreSQL latency on 300 trans/sec with RPS.

Modes
Latency in msec

Average Standard deviation

VXLAN 172.694 63.472

Weave 132.604 34.330

VXLAN/RPS 126.706 58.138

Weave/RPS 102.039 31.020

Figure 22. PostgreSQL latency on 300 trans/sec with RPS.

Figure 23. CPU utilization of postgresql client and server.

 Advances in Networks 2022; 10(2): 15-30 29

Figure 24. PostgreSQL latency on 500 trans/sec with RPS.

Figure 25. CPU utilization of postgresql client and server.

Table 16. PostgreSQL latency on 500 trans/sec with RPS.

Modes
Latency in msec

Average Standard deviation

VXLAN 197.007 54.227

Weave 175.468 49.913

VXLAN/RPS 174.521 37.031

Weave/RPS 135.42 23.353

5. Conclusion

In this work, we conducted an empirical study of various

container networks. We have confirmed what was observed in

the previous work, that host mode has the best performance

followed by NAT by deploying some cloud applications into

Docker containers. We have also demonstrated that the two

overlay networks (Docker default overlay and Weave) used in

this work have some performance overhead when compared

with the first two modes (host and NAT). However, these two

overlay networks have solved problems like port contention

and scalability problem in connecting containers in the cloud.

Because of this great advantage, we thought of reducing this

overhead as a very important research topic. We focused

towards this target and we were able to reduce the overhead of

these networks using some techniques in Linux networking

stack by testing with some of the applications. One thing

unique about our work is that, we have reduced the overhead

of two overlay networks by adding Docker default overlay that

uses VXLAN tunnel. This overlay network was not employed

in previous studies [15]. Our work seems to be the first to

approach overhead optimization of this network. The study

findings can help users in selecting the right network for their

workloads and serve as a guide in optimizing the existing

container networks. Finally, we have the intention to further

our work by doing the same thing to some other overlay

networks and deploying more cloud applications. The shell

scripts of our testbed is open sourced in a github repository in

the link: https://github.com/Yusuf-Haruna/Docker-Cloud-

Networking-M.Sc.-project. However, the main challenge of

this study was to tune the testbed and perform some tests with

RPS/RFS (Receive Packet Steering/Receive Flow Scaling).

30 Yusuf Haruna et al.: Analysis of Docker Networking and Optimizing the Overhead of

Docker Overlay Networks Using OS Kernel Support

References

[1] Wikipedia contributors, (2019) “Virtualization.” [Online].
Available: https://en.wikipedia. org/wiki/Virtualization

[2] K. Suo, Y. Zhao, W. Chen, and J. Rao, “An analysis and
empirical study of container networks,” in IEEE INFOCOM
2018-IEEE Conference on Computer Communications. IEEE,
2018, pp. 189–197.

[3] “Docker.” (2018) [Online]. Available:
https://www.docker.com/

[4] J. Turnbull, “The docker book,” 2016.

[5] P. Killelea, Web Performance Tuning: speeding up the web. ”
O’Reilly Media, Inc.”, 2002.

[6] “Sparkyfish.” (2018) [Online]. Available:
https://github.com/chrissnell/sparkyfish

[7] “Sockperf.” (2017) [Online]. Available:
https://github.com/Mellanox/sockperf

[8] “iperf.” (2018) [Online]. Available: https://iperf.fr/

[9] Wikipedia contributors, (2020) “Network address translation.”
[Online]. Available:
https://en.wikipedia.org/wiki/Network_address translation.

[10] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto, T.
Lange, and C. A. De Rose, “Performance evaluation of
container-based virtualization for high performance
computing environments,” in 2013 21st Euromicro
International Conference on Parallel, Distributed, and
Network-Based Processing. IEEE, 2013, pp. 233–240.

[11] K. Lee, Y. Kim, and C. Yoo, “The impact of container
virtualization on network performance of iot devices,” Mobile
Information Systems, vol. 2018, 2018.

[12] “Weaveworks.” (2019) [Online]. Available:
https://www.weave.works/docs/net/latest/ overview/

[13] “Flannel.” (2018) [Online]. Available:
https://github.com/coreos/flannel/

[14] “Calico.” (2018) [Online]. Available:
https://github.com/projectcalico/calicoctl

[15] D. Zhuo, K. Zhang, Y. Zhu, H. H. Liu, M. Rockett, A.
Krishnamurthy, and T. Anderson, “Slim:{OS} kernel support
for a low-overhead container overlay network,” in 16th
{USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 19), 2019, pp. 331–344.

[16] Wikipedia contributors, (2021) “Virtual extensible lan.”
[Online]. Available: https://en.wikipedia.org/wiki/Virtual
Extensible LAN.

[17] “Memcached.” (2018) [Online]. Available:
https://memcached.org/

[18] “memtier benchmark.” (2019) [Online]. Available:
https://github.com/RedisLabs/memtier_benchmark

[19] “Nginx.” (2019) [Online]. Available: https://nginx.org/en/

[20] “wrk.” (2019) [Online]. Available:
https://github.com/giltene/wrk2

[21] “Postgresql.” (2020) [Online]. Available:
https://www.postgresql.org/

[22] “pgbench.” (2020) [Online]. Available:
https://www.postgresql.org/docs/9.5/pgbench.html

[23] H.-J. Schonig and Z. Boszormenyi, PostgreSQL Replication.
Packt Publishing, 2015.

[24] “sar(1) - linux man page.” (2019) [Online]. Available:
https://linux.die.net/man/1/sar

