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Abstract: The superior performance of lightweight virtualization with containers over traditional virtualization enables 

the implementation of scalable systems and multi-tier/distributed networks. Containers supports the creation of dedicated 

network overlays, spanning over several virtual machines (VMs) or physical hosts to interconnect application fragments. 

Hence, there is a need to understand the comparative performance of various interconnection solutions in terms of needed 

resources (CPU, RAM, and networking). In this work, we use a variety of applications to benchmark the performance of 

different container interconnection solutions. Accordingly, we experimented with four applications namely Memcached, 

Nginx, PostgreSQL, and iperf3. Each of these applications was installed inside a container in one VM and their 

corresponding benchmarks (test client) in a separate container in another VM in order to benchmark the performance of the 

applications. The VMs were interconnected using four modes namely: host, NAT, Docker default overlay (VXLAN) and 

weave. The experimental results revealed superior performance in host mode, followed by NAT and the overlay networks 

(VXLAN and weave) which have the least performance due to packet encapsulation. In each case, sar was used to monitor 

the CPU utilization. We were able to reduce the overhead of the two overlay networks using RPS (Receive Packet Steering) 

technique because they brought solutions to some of the problems faced when connecting containers using host and NAT 

modes in the cloud. 
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1. Introduction 

Virtualization technology is a computing breakthrough that 

enables the deployment of applications on virtual (rather than 

physical) hardware resources [1]. Several approaches were 

proposed in optimizing the performance of this technology 

when deployed as a full-fledged Operating System 

(traditional virtual machines) or container-based 

virtualization. Exemplary studies focuses on addressing how 

many virtual machines (VMs) can be consolidated on one 

physical machine, optimizing VMs startup time, and 

networking multiple VMs among others [2]. Particularly, 

container-based virtualization provides lightweight 

virtualization environment, which works by sharing the 

kernel and the libraries of the original (host) operating 

system among the running applications. It works by running 

them in an isolated namespace called container. A namespace 

is a way of logically separating processes along different 

dimensions: Network, IPC, User, PID, Mount or UTS 

namespace. Unlike the traditional VMs, containers enables 
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partitioning of hardware resources to users in order to 

speedup deployment of applications [2]. The most popular 

containerization solutions currently in the market is Docker 

[3, 4]. 

However, for an efficient computation to take place, the 

running applications within the containers need to 

communicate with each other either within the same host 

or between multiple hosts. These communications are of 

critical concern due the fact that, the performance of a 

system is significantly affected by the characteristics of 

the communication [5]. Hence, the need to study and 

analyze different container networking models in order to 

make good choices of the right model to use on a given 

system. 

The present study aimed at analyzing the performance of 

Docker container networking in single Virtual Machine 

(VM) and multiple VM scenarios. Accordingly, a number of 

benchmarks including Sparkyfish [6], Sockperf [7] and 

iperf3 [8] will be used in carrying out the analysis. 

Furthermore, to understand the performance of different 

Docker Networking solutions, we will experiment on four 

distinct modes of connecting containers in the cloud (host, 

NAT [9], Docker default overlay and weave). We will build 

a realistic testbed by selecting three popular cloud 

applications and deploying them into Docker containers to 

benchmark their performance in the four modes and 

optimize the overhead of the overlay Networks using 

OS/hardware support. 

2. Literature Review 

Docker is an open-source software produced by a team of 

researchers at Docker Inc. It allows automation of 

applications deployment into containers and it was designed 

in such a way that application deployment engine is added on 

top of a virtualized environment that allows execution of 

containers [3, 4]. Figure 1 shows a comparison between 

traditional virtualization and lightweight virtualization using 

Docker. Traditional virtualization uses a hypervisor for 

creating the virtual machines (guest OSs); where each of 

them has its own separate libraries and binary files. On the 

other hand, lightweight virtualization using Docker allows 

running of applications in containers. The containers share 

the kernel and other files of the same OS. 

 

Figure 1. Traditional Virtualization Vs Lightweight Virtualization (Source: https://www.docker.com/). 

Containers are such an environment that can host several 

processes and each process can have its network stack. 

Containers incur less overhead when compared with virtual 

machines. Several applications that are frequently launched 

and terminated within a second can be deployed using 

containers. There are different modes to connect containers 

that are organized in different scenarios in order to enable 

communications between the running applications either in a 

single VM or between multiple VMs [2]. Indeed, in many 

deployment scenarios, containers are deployed within VM 

and not directly on the host OS because containers do share 

the host kernel and any breach in the containerization engine 

might compromise the whole machine. 

Several studies were carried out to understand how 

container-based virtualization works. However, most of the 

studies did not approached the problem from networking 

point of view. For instance, Xavier et al. [10] conducted a 

comparative evaluation on a high performance computing 

(HPC) environments based on Memory Performance, Disk 

Performance, Network Performance (on a very narrow 

perspective), and Performance Overhead. Similarly, Lee et 

al. [11] studied the impact of container virtualization on 

network performance with restriction on IoT devices. Suo et 

al. [2] studied and analyzed the performance of Docker 

container networking in two scenarios; both containers are 

on a single VM and on multiple VMs. The first 

experimental scenario was carried out using bridge mode, 

container mode and host mode relative to without container 

mode with a number of benchmarks that perform an active 

test. The second experimental scenario was carried out 

using host mode, NAT and overlay networks (Docker 

default overlay, weave [12], flannel [13] and calico [14]. 

Simple Benchmarks (bulk transfer tools similar to iperf) 

that perform active test were also used. The comparative 
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findings of the study are crucial when deciding which mode 

to use in networking containers. The study findings 

revealed that the overlay networks used in the multiple VM 

case have some significant overhead on the performance of 

the network due to packet encapsulation. Nevertheless, 

these overlay networks have brought solutions to some of 

the problems (for instance port contention, scalability 

problem and so on) faced when connecting containers using 

host and NAT modes, hence, the overlay networks are 

highly used in networking containers in the cloud. The 

comparative findings of the study are crucial when deciding 

which mode to use in networking containers. However, the 

study failed to highlight ways to reduce the overhead of the 

overlay networks despite their importance, and was 

conducted without deploying some applications into the 

containers when carrying out the experiments. Accordingly, 

a recent study by Zhuo et al. [15] used OS kernel support to 

reduce the overhead of one of the overlay networks (weave) 

and experimented with some applications deployed into 

containers. The study utilized only Sparkyfish and Sockperf 

benchmarks in the analysis process. 

In the present study, we extended the work of Zhuo et al. 

[15] by considering the case of containers running inside 

VMs, deploying some popular cloud applications to 

understand the performance of Docker networking modes, 

and involving an additional networking mode based on 

Network Address Translation (NAT). Moreover, apart from 

the weave overlay network, we built a testbed and further 

experimented with Docker default overlay network which 

uses virtual extensible LAN (VXLAN) [16] tunnel in 

connecting containers. Furthermore, we evaluate the 

experimental performance of the four distinct modes (Host, 

NAT, Docker default overlay (VXLAN) and weave) by 

deploying applications like Memcached [17, 18], Nginx [19, 

20] and PostgreSQL [21, 22, 23] together with their 

benchmarks. The experimentation was carried out with iperf3 

and we approached overhead optimization using RPS 

(Receive Packet Steering) by testing on PostgreSQL. 

3. Method 

3.1. Research Motivation 

Many applications are being deployed in the cloud 

nowadays, which brought about quite a number of 

improvements to modern days computing. This enables 

companies to focus more on their core business for better 

satisfaction of their clients instead of spending more 

resources on the computing infrastructure and their 

maintenance. As of today, a significant fraction of companies 

uses cloud-computing solutions for their work. They might 

use a third party public cloud solutions like Amazon web 

services, Microsoft Azure etc. or even private cloud solutions 

for example with Openstack to achieve their business target. 

These developments are possible because of the 

virtualization technology. Container-based virtualization 

being a lightweight virtualization (which behaves by 

partitioning the hardware resources) has more advantages 

than traditional virtualization (which behaves like a full 

Operating System). These advantages and many other make 

computing easier and cheaper nowadays. However, this 

development cannot be possible without good performance 

of communication between containers, hence, it is of great 

importance to study and analyze the container networking 

performance. 

An emblematic example is how search engines use 

container-based virtualization, for instance, google search 

engine launches almost 7,000 containers every second [3] 

and these containers communicate with each other in order to 

deliver the result of the google searches. This obviously 

raises the need for good networking performance. 

3.2. Research Procedure 

We tested the performance of Docker container networking 

in single Virtual Machine (VM) and multiple VM scenarios. 

We used three distinct benchmarks in carrying out the 

analysis including Sparkyfish, Sockperf as used in [15] and 

we extended with iperf3. Therefore, in the present study we 

adapted and extended the research procedure reported in [15] 

as follows: 

1) We evaluated the performance of different Docker 

Networking solutions based on four modes (host, NAT, 

Docker default overlay and weave) of connecting 

containers in the cloud. 

2) We built a realistic testbed by selecting three popular 

cloud applications (and their benchmarks) and 

deploying them into Docker containers to benchmark 

their performance in the four modes. We also performed 

similar analysis with iperf3, which performs an active 

measurement. 

3) We obtained comparative results by testing our testbed 

and monitor system level performance with sar (System 

Activity Reporting) [24] which is a Unix System V-

derived system monitor command. 

4) We also utilized statistical tools like boxplot and 

standard deviation in understanding the level of 

variability of the results (thirty samples in each case) for 

statistical significance. 

5) We approached overhead optimization of the overlay 

networks using OS/hardware support. 

3.3. Experimental Settings 

We carried out the experiments on a HP machine which 

has 12GB memory, Intel (R) core (TM) i7-6500U CPU @ 

2.50GHz (4 CPUs) approximately 2.6GHz processor, and 

WDC WD10JPVX-60JC3T0 1TB hard disk. We used 

Ubuntu 16.04 and Linux kernel 4.15.0-45-generic as both 

host and guest OS. The hypervisor was KVM version 2.5.0 

where the VMs were assigned with the virtio NIC driver, 

2vCPUs and 4GB RAM each. Docker version was 18.09.2 

Community Edition and weave version was 2.5.0. 

For each test, a container was created using Docker [3] in 

one Virtual machine (VM) where the application was 
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installed and the corresponding benchmark was installed in 

another container in a different virtual machine. When the 

test is going on, sar (system activity reporting) also runs in 

parallel in order to monitor the performance of the system 

(CPU utilization in our case), a draft of this configuration is 

shown in Figure 2. The two VMs were connected using one 

of the four modes (host, NAT, VXLAN and weave modes). 

There are two ways of deploying containers either on a VM 

because of security for example by cloud provider or on a 

physical machine for example by Google. In this study, we 

carried out the experiments by deploying the containers in 

VMs. 

 

Figure 2. Virtual Machines configuration in a physical machine. 

4. Results and Discussion 

4.1. Iperf3 

We collected a total of thirty (for each mode) samples of 

the result by running the shell scripts of our testbed. 

Consequently, a container was created with iperf3 installed 

and the server was started in one VM followed by the client 

in another VM on the four modes of container connections 

between multiple hosts. We carried out the experiments 

with the two popular protocols TCP (Transmission Control 

Protocol) and UDP (User Datagram Protocol). We used bar 

plots to represents the average and error bars (which denote 

the standard deviations) to analyze the results and boxplots 

to visualize the level of variability of the results. Table 1 

shows the average and standard deviation of the TCP 

throughput in Mbps while Table 2 shows that of UDP. Host 

mode achieved the highest throughput followed by NAT 

which dropped by 8% when compared with host mode, 

VXLAN and weave have the least throughput with a drop 

of 77% and 82% respectively, in the case of TCP. Moreover, 

in the UDP case NAT dropped by 52% while VXLAN and 

weave dropped by 66% and 70% respectively. The 

following figures show the bar plots (Figure 3) and 

boxplots (Figure 4) of both TCP and UDP results. The 

results have less variability especially in VXLAN and 

weave modes. Figure 5 shows the CPU utilization of the 

client and server where the client consumed more CPU than 

the server except in weave mode. In both cases, most of the 

CPU was spent in the kernel part more than the user part 

and this is in line with the fact that it is the kernel that 

actually does most of the job of packet sending, which is 

what iperf does. Both the client and server have very less 

I/O in all of the modes. 

Table 1. Iperf3 TCP throughput. 

Modes 
TCP throughput in Mbps 

Average Standard deviation 

Host mode 13849.866 634.865 

NAT 12739.733 620.433 

VXLAN 3148.266 422.759 

Weave 2416.0 93.614 

Table 2. Iperf3 UDP throughput. 

Modes 
UDP throughput in Mbps 

Average Standard deviation 

Host mode 4113.066 129.206 

NAT 1979.466 70.493 

VXLAN 1375.466 62.582 

Weave 1217.066 75.830 
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Figure 3. Iperf3 throughput. 

 

Figure 4. Iperf3 throughput boxplot. 

 

Figure 5. CPU utilization of iperf3 client and server. 

4.2. Memcached 

We collected a total of thirty (for each mode) samples of 

the result by running the shell scripts of our testbed. It 

created the container, installed memcached server inside and 

started the server in a container on one VM. It then installed 
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memtier benchmark in another container and start the test on 

a separate VM. The VMs were connected using one of the 

four modes of container connections in each run of the 

experiments. We carried out the experiments using the two 

protocols of memcached, which are memcached text and 

memcache binary. We used bar plot with error bars (to 

denotes the standard deviation) to analyze the result and 

boxplot to visualize the level of variability of the results. 

For the memcached text protocol, the following tables 

show the average throughput in Kbps and standard deviation 

(Table 3), average latency in millisecond and the 

corresponding deviation (Table 4). Host mode achieved the 

highest throughput followed by NAT which dropped by 23% 

compared to host but VXLAN and weave recorded almost 

same throughput they both dropped by about 34%. 

Furthermore, host has the least latency followed by NAT 

which increased by 26% then VXLAN and weave with an 

increase of 49% and 48% respectively. Figure 6 shows the 

bar plot of the throughput and latency while figure 7 shows 

the corresponding boxplots where less variability was 

observed with few outliers. Table 5 shows the mean and 

standard deviation of SET operation latency also in 

millisecond while Table 6 shows the latency of GET 

operation. The distribution of latency for Memcached SET 

and GET operations is shown in figure 8 where the two 

overlay network lines overlapped in both cases which means 

the performance of the overlay networks is almost the same. 

Figure 9 shows the CPU utilization of the client and server 

where the client in which the benchmark (memtier 

benchmark) was installed consumed more CPU than the 

server (running the memcached server) except in VXLAN 

mode. The client CPU consumption in the kernel is almost 

equal to that of the user in all of the four modes and has very 

low I/O. On the other hand, the server spent more time in the 

kernel part than the user part in all of the four modes except 

VXLAN. 

 

Figure 6. Memcached throughput and latency with memcache text protocol. 

 

Figure 7. Memcached throughput and latency boxplot with memcache text protocol. 
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Figure 8. Distribution of latency for Memcached SET and GET operations, illustrating tail latency effects. The two overlay network lines overlap. 

 

Figure 9. CPU utilization of memcached client and server. 

Table 3. Memcached throughput with memcache text protocol. 

Modes 
Throughput in Kbps 

Average Standard deviation 

Host mode 11688.304 2238.144 

NAT 9149.296 1222.44 

VXLAN 7776.544 1066.856 

Weave 7790.952 670.744 

Table 4. Latency for responding to Memcached command with memcache text protocol. 

Modes 
Latency in msec 

Average Standard deviation 

Host mode 4.1105 0.5641 

NAT 5.1807 0.469 

VXLAN 6.1569 0.9858 

Weave 6.0802 0.7295 

Table 5. Latency of Memcached SET operation with memcache text protocol. 

Modes 
SET latency in msec 

Average Standard deviation 

Host mode 4.506 1.029 

NAT 5.573 0.774 

VXLAN 6.781 1.676 

Weave 6.730 1.182 
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Table 6. Latency of Memcached GET operation with memcache text protocol. 

Modes 
GET latency in msec 

Average Standard deviation 

Host mode 4.07 0.549 

NAT 5.14 0.470 

VXLAN 6.09 0.93 

Weave 6.01 0.759 

 

Moreover, for the memcache binary protocol, Table 7 

shows the average throughput in Kbps and their standard 

deviation while Table 8 shows the latency for responding 

to the memcached command in millisecond and the 

standard deviation for all the modes. As usual host mode 

recorded the highest throughput followed by NAT which 

dropped by 17% and the two overlay networks have the 

least throughput where VXLAN dropped by 30% and 

weave dropped by 29%. Also in the latency of the 

memcached server response, the order remain the same. 

NAT had an increase of of 20% when compared with host 

mode because in case of latency the lower the better. 

VXLAN increased by 42% while weave increased by 40%. 

Figure 10 shows the bar plots of the throughput and 

latency with error bars denoting standard deviation. On 

the other hand, Figure 11 shows the corresponding 

boxplots, the results did not get much variability and there 

are few outliers. Table 9 shows the mean and standard 

deviation of SET operation latency also in millisecond 

while Table 10 shows the latency of GET operation. The 

distribution of the latency for Memcached SET and GET 

operations is shown in Figure 12 where the two overlay 

network lines overlapped in both cases which means the 

performance of the overlay networks is almost the same. 

Figure 13 shows the CPU utilization of the client and 

server. On the server part, there is no much consumption 

of the CPU resource while in the client that is the 

benchmark part, the consumption is a bit high. There is no 

much difference between the CPU consumption of the 

overlay networks and the rest of the modes. 

Table 7. Memcached throughput with memcache binary protocol. 

Modes 
Throughput in Kbps 

Average Standard deviation 

Host mode 15168.813 2214.971 

NAT 12488.656 1532.746 

VXLAN 10564.314 1134.282 

Weave 10699.154 962.507 

Table 8. Latency for responding to Memcached command with memcache binary protocol. 

Modes 
Latency in msec 

Average Standard deviation 

Host mode 4.471 0.478 

NAT 5.390 0.493 

VXLAN 6.365 0.572 

Weave 6.268 0.510 

Table 9. Latency of Memcached SET operation with memcache binary protocol. 

Modes 
SET latency in msec 

Average Standard deviation 

Host mode 4.983 0.972 

NAT 5.691 0.546 

VXLAN 6.812 1.044 

Weave 6.723 0.469 

Table 10. Latency of Memcached GET operation with memcache binary protocol. 

Modes 
GET latency in msec 

Average Standard deviation 

Host mode 4.418 0.486 

NAT 5.359 0.495 

VXLAN 6.319 0.547 

Weave 6.221 0.538 
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Figure 10. Memcached throughput and latency with memcache binary protocol. 

 

Figure 11. Memcached throughput and latency boxplot with memcache binary protocol. 

 

Figure 12. Distribution of latency for Memcached SET and GET operations, illustrating tail latency effects. The two overlay network lines overlap. 
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Figure 13. CPU utilization of memcached client and server with memcache binary protocol. 

4.3. Nginx 

1KB HTML file: A total of thirty (for each of the four modes) 

samples were collected by setting the throughput to 3K 

requests/second. Table 11 shows the average of the results and 

their standard deviation. Figure 14 shows the bar plot (with the 

error bar denoting the standard deviation) and the boxplot 

showing the level of variability of the results. Host mode 

recorded the least latency followed by NAT with an increase 

of 16% then weave and VXLAN with an increase of 24% and 

30% respectively. Figure 15 shows the CPU utilization of the 

client (wrk) and server (nginx) where they both have almost 

the same CPU consumption in which kernel part is more than 

the user part and I/O is very low in all of the modes. 

 

Figure 14. 3K reqs/sec Nginx 1KB latency. 

 

Figure 15. CPU utilization of Nginx client and server in 1KB file. 
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Table 11. Nginx 1KB html file latency. 

Modes 
Latency in msec 

Average Standard deviation 

Host mode 2.228 0.176 

NAT 2.603 0.247 

VXLAN 2.776 0.320 

Weave 2.918 0.344 

1MB HTML file: thirty samples were collected by setting the 

throughput to 3K requests/second for each experiment on the 

four modes. Table 12 shows the average of the results and their 

standard deviation. Figure 16(a) shows the bar plot (with the 

error bar denoting the standard deviation) and the boxplot (b) 

showing the level of variability of the results. Host mode has 

the least latency followed by NAT with an increase of 5% then 

weave and VXLAN with an increase of 26% and 24% 

respectively. Figure 17 shows the CPU utilization of the client 

(wrk2 benchmark) and server (nginx), similar to 1KB file, they 

almost have the CPU consumption in all the four modes. 

Table 12. 3K reqs/sec Nginx 1MB html file latency. 

Modes 
Latency in msec 

Average Standard deviation 

Host mode 2.266 0.258 

NAT 2.385 0.150 

VXLAN 2.864 0.184 

Weave 2.827 0.400 

 

 

Figure 16. 3K reqs/sec Nginx 1MB file latency. 

 

Figure 17. CPU utilization of Nginx client and server in 1MB file. 

For the latency of the two html files (1KB and 1MB), we 

expect to see much difference in the results with higher 

values on the 1MB. We tried changing the configuration of 

the nginx server and some other options but we keep 

obtaining the same results. Nevertheless, we intended to do 

more work on this part in our future work. 

4.4. PostgreSQL 

We collected thirty samples of the results by executing the 

scripts of our testbed on each of the four modes. We carried 

out the experiments by setting the benchmark i.e pgbench to 

generate 300 transactions per second and then later stress 
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more the system by generating 500 transactions per second. 

For the first case, Table 13 shows the average of the results 

and their standard deviation. Figure 18(a) shows the bar plot 

(with the error bar denoting the standard deviation) and the 

boxplot (b) showing the level of variability of the results. 

Host mode recorded the least latency followed by NAT 

(which increased by 8.5%) then weave with an increase of 

42% and VXLAN achieved the highest latency with an 

increase of 85%. Figure 19 shows the CPU utilization of the 

client and server where the client which is the benchmark 

(pgbench) has more consumption in the user than the kernel 

part and a very low I/O. On the other hand, the server has 

kernel part almost same as that of the user and I/O which is 

big compared to other applications. This is because 

postgreSQL has more disk operations than the rest of the 

applications as the data is stored on disk. 

Table 13. PostgreSQL latency on 300 trans/sec. 

Modes 
Latency in msec 

Average Standard deviation 

Host mode 93.197 31.443 

NAT 101.206 45.058 

VXLAN 172.694 63.472 

Weave 132.604 34.330 

 

 

Figure 18. PostgreSQL latency on 300 trans/sec. 

 

Figure 19. CPU utilization of postgresql client and server. 

Moreover, for the 500 transactions per second, the average 

and standard deviation of the PostgreSQL latency for each of 

the four modes are shown in Table 14. Similar to the previous 

cases, host has the best latency. It was followed by NAT with 

an increase of about 3%. VXLAN increased by 34% while 

weave increased by 20%. Figure 20 shows the bar plots and 

the corresponding boxplots where NAT and VXLAN have 

variability a bit more than host and weave whose variability 

are closed to the 300 transactions results. The CPU utilization 

of the client and server is shown in Figure 21 where the 

benchmark (client) has less utilization of the CPU (especially 

in the two overlay networks) than in 300 transactions case. 

On the server side, the utilization is almost the same as that 

of the 300 transactions scenario. Stressing the system does 
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not have much impact on the CPU utilization. It has more impact on the performance of the network. 

 

Figure 20. PostgreSQL latency on 500 trans/sec. 

 

Figure 21. CPU utilization of postgresql client and server. 

Table 14. PostgreSQL latency on 500 trans/sec. 

Modes 
Latency in msec 

Average Standard deviation 

Host mode 146.454 49.352 

NAT 150.503 43.897 

VXLAN 197.007 54.227 

Weave 175.468 49.913 

4.5. Preliminary Results of the Reduced Overhead of Some 

Applications 

The experimental results reported from the three 

applications and iperf3 revealed the best performance in the 

host mode among the four modes of Docker networking in all 

the applications. It was followed by NAT which had a few 

percentage of performance drop compared to host mode. The 

two overlay networks (Docker default overlay and Weave) 

have the worst performance in all scenarios. Nevertheless, 

overlay networks have brought solutions to some of the 

problems faced when host and NAT modes are used for 

connecting containers in the cloud. Some of these problems 

are: port contention, scalability problem and so on. It is thus 

of great importance to improve their performance. We used 

RPS in achieving this objective by taking advantage of the 

nowadays multi-processor systems by balancing the loads to 

the available CPUs. We focused on one of the three 

applications, which is PostgreSQL in order to reduce the 

overhead on its performance. We reduced the latency of this 

application by activating the RPS technique on the NICs of 

our system when carrying out the experiments. 

We carried out the experiments with 300 transactions per 

second when making a request to the PostgreSQL server. 

Table 15 shows the average and standard deviation of the 

thirty samples collected. Docker default overlay (VXLAN) 

had a performance gain of 26.6% and Weave had 23% in the 

latency of the communication between the server and the 

benchmark. Figure 22(a) can be used to visualize this result 

where the bars denote the average and error bars denote the 
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standard deviation while (b) shows the corresponding 

boxplot where the results did not have much variability. This 

is a significant improvement in the performance in which 

weave had almost same performance with NAT. Moreover, 

Figure 23 shows the CPU utilization of the client (pgbench 

benchmark) and server (PostgreSQL server). The server 

consumed a bit more of CPU resource compared to non RPS 

setting especially in VXLAN. This can be due to 

involvement of more than one CPU in the process. 

To stress more the system, we also carried out similar 

experiment with 500 transactions per second. In this case, we 

were able to improve the performance of VXLAN by 11.4% 

and weave by 22.8%. Table 16 shows the average and 

standard deviation of the thirty samples collected. Figure 

24(a) can be used to visualize the result with the bars 

representing the average and errors bar denoting the standard 

deviation while (b) display the corresponding boxplot. Figure 

25 shows the CPU utilization of the client and server in 

which VXLAN consumed a bit more CPU than in non-RPS 

setting while weave consumed less on the server side. On the 

client side, both of the two overlay networks consumed a bit 

more CPU than on non RPS and this could be due to the fact 

that more CPUs were involved in the process. One thing 

unique about our work is reducing the overhead of Docker 

default overlay network (VXLAN) in addition to Weave 

using the RPS technique. Other works like [15] reduced the 

overhead of only Weave. Some works like [2] performed an 

analysis of different docker networking modes which reveals 

the modes that have the best performance, this work does not 

optimize the overhead of overlay network(s) despite of the 

fact that overlay networks have solved some of the problems 

faced when using host and NAT modes. Our work does not 

optimize the overhaed of only VXLAN but that of both 

VXLAN and Weave. 

Table 15. PostgreSQL latency on 300 trans/sec with RPS. 

Modes 
Latency in msec 

Average Standard deviation 

VXLAN 172.694 63.472 

Weave 132.604 34.330 

VXLAN/RPS 126.706 58.138 

Weave/RPS 102.039 31.020 

 

 

Figure 22. PostgreSQL latency on 300 trans/sec with RPS. 

 

Figure 23. CPU utilization of postgresql client and server. 
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Figure 24. PostgreSQL latency on 500 trans/sec with RPS. 

 

Figure 25. CPU utilization of postgresql client and server. 

Table 16. PostgreSQL latency on 500 trans/sec with RPS. 

Modes 
Latency in msec 

Average Standard deviation 

VXLAN 197.007 54.227 

Weave 175.468 49.913 

VXLAN/RPS 174.521 37.031 

Weave/RPS 135.42 23.353 

5. Conclusion 

In this work, we conducted an empirical study of various 

container networks. We have confirmed what was observed in 

the previous work, that host mode has the best performance 

followed by NAT by deploying some cloud applications into 

Docker containers. We have also demonstrated that the two 

overlay networks (Docker default overlay and Weave) used in 

this work have some performance overhead when compared 

with the first two modes (host and NAT). However, these two 

overlay networks have solved problems like port contention 

and scalability problem in connecting containers in the cloud. 

Because of this great advantage, we thought of reducing this 

overhead as a very important research topic. We focused 

towards this target and we were able to reduce the overhead of 

these networks using some techniques in Linux networking 

stack by testing with some of the applications. One thing 

unique about our work is that, we have reduced the overhead 

of two overlay networks by adding Docker default overlay that 

uses VXLAN tunnel. This overlay network was not employed 

in previous studies [15]. Our work seems to be the first to 

approach overhead optimization of this network. The study 

findings can help users in selecting the right network for their 

workloads and serve as a guide in optimizing the existing 

container networks. Finally, we have the intention to further 

our work by doing the same thing to some other overlay 

networks and deploying more cloud applications. The shell 

scripts of our testbed is open sourced in a github repository in 

the link: https://github.com/Yusuf-Haruna/Docker-Cloud-

Networking-M.Sc.-project. However, the main challenge of 

this study was to tune the testbed and perform some tests with 

RPS/RFS (Receive Packet Steering/Receive Flow Scaling). 
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