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Abstract 

In this paper, an approximate effective nucleon-nucleon interaction for nuclear matter and finite studies has been derived using 

the lowest order constrained variational (LOCV) approach. The LOCV method, a functional minimization procedure, uses a 

normalization constraint to keep higher-order terms as small as possible. As a first step, two-body matrix elements based on the 

Reid93 nucleon-nucleon potential were calculated for the nuclear system A = 16 in a harmonic oscillator basis, with the oscillator 

size parameter ћω = 14.0 MeV, and separated into the central, spin-orbit and tensor channels in conformity with the potentials for 

Inelastic scattering. Following this, a least squares fitting of the matrix elements to a sum of Yukawa functions was performed to 

determine the strengths of the effective interaction in the singlet-even, singlet-odd, triplet-even and triplet-odd (Central); 

tensor-even and tensor-odd (Tensor); spin-orbit-even and spin-orbit-odd (Spin-orbit) channels. Of all the matrix elements, only 

the triplet-even and tensor-even components, being attractive, are affected by the tensor correlations (a = 0.05); and are shown to 

exhibit the same trend of variation in conformity with past work, in terms of magnitude, as one goes from the lower-node 

quantum numbers (n’, n) = (0, 0) to higher ones (n’, n) = (2, 2). When compared with the G-matrix results of previous 

researchers, the results obtained herein have been found to be in good agreement. This, therefore, gives hope that the new 

effective interaction promises to be a reliable tool for nuclear matter and nuclear structure studies. 
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1. Introduction 

Effective nucleon-nucleon (NN) interactions have been at 

the centre of Nuclear Physics researches since the discovery 

of the neutron because of their crucial role in nuclear matter 

calculations. In recent years, a number of effective interac-

tions have been successfully developed based on approaches 

ranging from empirical fit of experimental data to micro-

scopic derivation from the bare NN potential. Some of these 

approaches are the G-matrix approach [1], lowest-order con-

strained variational (LOCV) principle [2], relativistic 

mean-field theory (RFM) [3], Chiral quark models based on 

quantum chromodynamics (QCD) [4] and effective field 

theory (EFT) [5]. 

A very useful feature of these interactions is that analytical 

expressions for many interesting quantities in both symmetric 

and asymmetric nuclear matter are contained in them, making 

the study of nuclear matter properties a transparent exercise. 
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Generally, the effective NN interactions can be divided into 

two groups [6]. The first group is that in which the effective 

NN interaction is directly parametrized as a whole, leaving 

out any connection with a realistic free NN interaction. In the 

non-relativistic approaches, the parameters of the effective 

NN interaction belonging to this group are obtained by fitting 

the Hartree-Fock (HF) mean-field result to experimental data. 

The second group involves the derivation of the effective NN 

interaction in the lowest order of many-body calculation from 

a realistic free NN scattering data (e.g a solution of Be-

the-Goldstone equation) and the higher-order corrections are 

parametrized in terms of a density or momentum dependence 

[7-9]. One of the effective interactions belonging to the first 

group is the Skyrme interaction [6] while the M3Y-Reid and 

M3Y-Paris effective interactions are examples of effective 

interactions belonging to the second group. The effective 

interactions [2], developed based on the Reid68 [10] nucle-

on-nucleon (NN) potential within the framework of cluster 

expansion technique via the LOCV approach by using 

two-body correlation functions, belong to the second group. 

These inter­ actions [2], have continued to be applied to nu-

clear matter [11-13] and nuclear reaction [14-17] studies with 

excellent results. Our findings from these studies have shown 

that very simple two-body correlation functions can be used to 

obtain very accurate results comparable with the best availa-

ble methods. 

The ultimate goal of this work is to update our previous 

calculations [2] based on the fact that improvement in NN 

phase-shift data has led to the construction of more accurate 

and high quality NN potentials, one of which is the Nijmegen 

potential known as the Reid93 [18, 19]. This work is also an 

update on the earlier calculations [20]. Doing this, the nuclear 

matrix elements of the two-body interaction, leading to our 

approximate effective interaction, are first derived within the 

framework of LOCV using two-body correlation functions 

based on the Reid93. When successfully developed, the ap-

proximate effective interaction will be applied to nuclear 

matter and nuclear reactions in subsequent calculations with 

the intent to compare its performance with that of the effective 

interactions [2]; and this should show clearly the effect of the 

improved phase shift on the new effective interaction. 

Knowing fully well that the LOCV method parallels the 

G-matrix approach or any other sophisticated approach to the 

microscopic study of effective interactions, the performance 

of the new interaction will be subsequently compared with 

those of the G-matrix effective interactions and the like. 

2. The Lowest Order Constrained 

Variational Approach 

The lowest order constrained variational (LOCV) method 

employs a normalization constraint to keep higher-order 

terms as small as possible [21]. This functional minimization 

procedure represents an enormous computational simplifica-

tion over unconstrained methods that attempt to go beyond 

lowest order. 

To obtain an effective two-body interaction, the LOCV 

method was employed by Fiase and his co-researchers [2] 

who have shown that a non-relativistic nucleon fluid inter-

acting through a two-body potential, in the centre of mass 

rest-frame, can be represented by the Hamiltonian: 

𝐻𝑖𝑗 = ∑ −
ℏ2

2𝑚𝑖 ∇𝑖
2 + ∑ 𝑉𝑖𝑗𝑖>𝑗             (1) 

where 𝑉𝑖𝑗  is the two-body potential and the translationally 

invariant component of the trial wave function is defined as: 

ψ𝑇 = 𝑈𝐺𝜙                   (2) 

with U as a unitary operator which transforms the system to 

the centre-of-mass rest frame, leaving only the intrinsic 

quantities so that spurious centre-of-mass motion is no longer 

a matter of concern. G is a symmetric product of two-body 

correlation functions defined as [22]: 

𝐺 = ∏ 𝑔2𝑖>𝑗 (𝑖𝑗)                (3) 

where 𝑔2(𝑖𝑗) are the two-body correlation operators. These 

correlations are formulated to accommodate the effect of the 

strong repulsion of the nucleon-nucleon interaction, and 𝜙 is 

a multidimensional product of two-body wave functions. The 

explicit form of 𝑔2(𝑖𝑗), the two-body correlation operators is 

given in equations (8-11) below. 

The multidimensional nature of the Hamiltonian in equa-

tion (1) makes it difficult to calculate its matrix elements, so 

approximations must be made using the cluster expansion 

technique in which the system is divided into clusters, re-

sulting in a two-body effective interaction. This way, the 

energy of each cluster is evaluated starting with the two-body 

clusters and then summed over all the clusters to obtain the 

total energy: 

𝐸 = 𝐸2 + 𝐸3 + 𝐸4 − − −           (4) 

In this approximation, only the two-body clusters are most 

important, so the two- body energy term E2 is minimized to 

the lowest order with respect to the functional variations of the 

two-body correlation functions while the contributions of E3 

and higher order clusters are made negligibly small. This 

approximation implies that one is concerned only with the 

two-body energy term, E2 of the form [23]: 

𝐸2 = 〈𝜙 |∑ [𝑔2(𝑖𝑗) (
𝑃𝑖𝑗

2

𝑀
− 𝑉𝑖𝑗) 𝑔2(𝑖𝑗)]𝑖>𝑗 | 𝜙〉,     (5) 

where 𝑃𝑖𝑗 =
1

√2
(𝑃𝑖 − 𝑃𝑗) is the relative momentum of the 

two-particle system. 

M ~ m NA is the total mass of the nucleus, and 𝑉𝑖𝑗 is the 
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Reid93 [18, 19] potential of the form: 

𝑉𝑖𝑗 = ∑ 𝑉𝑖𝑗
𝜃                 (6) 

where 𝜃  are different reaction channels with the central, 

spin-orbit and tensor components. For each channel, the 

two-body correlation function has a form consistent with that 

of the chosen potential [24]. Therefore, 

𝑔2(𝑖𝑗) = ∑ 𝑔𝑖𝑗 
𝜃

𝜃               (7) 

where, 

𝑔𝑖𝑗 = 𝑔𝐶
𝜃(𝑥𝑖𝑗) + 𝑔𝐿𝑆

𝜃 (𝑥𝑖𝑗)𝐿 ∙ 𝑆 + 𝑔𝑇
𝜃(𝑥𝑖𝑗)𝑆𝑖𝑗      (8) 

and the tensor operator [25]: 

 𝑆𝑖𝑗 = 3(𝜎𝑖 . 𝑥𝑖𝑗)(𝜎𝑗 . 𝑥𝑖𝑗) − 𝜎𝑖𝜎𝑗          (9) 

Studies on nuclear matter and finite nuclei [22] have re-

vealed the two-body correlation functions to have the tensor 

correlations in the 
3
S1 - 

3
D1 channel as the most important 

feature. Accordingly, the two-body correlation functions of 

equation (8) have been parameterized in the form [26]: 

𝑔2(𝑖𝑗) = 0, 𝑥𝑖𝑗 < 𝑥𝐶             (10) 

𝑔2(𝑖𝑗) = (1 − 𝑒−𝛽(𝑥𝑖𝑗 − 𝑥𝐶)
2

) [1 + 𝛼𝜆(𝐴)𝑆𝑖𝑗], 𝑥𝑖𝑗 > 𝑥𝐶   

where 𝑥𝐶  = 0.25fm and 𝛽 =25 f m - 2. The parameter 𝛼𝜆(𝐴) 

represents the strength of the tensor correlations and is 

non-zero only in the lowest coupled 
3
S1 - 

3
D1 channel. 

To evaluate matrix elements, one works in the harmonic 

oscillator basis. In this regard, only the effective two-body 

potential energy terms are obtained from equation (6) as: 

𝐸2
′ = 〈𝜙|∑ [𝑔2(𝑖𝑗)𝑉𝑖𝑗𝑔2(𝑖𝑗)]𝑖>𝑗 |𝜙〉        (11) 

with the oscillator size parameter ћω and the strength of the 

tensor correlations 𝛼𝜆(𝐴) as the only parameters appearing 

in the calculation. 

Now, following the procedure of [1], the two-body poten-

tial matrix elements are separated into their respective chan-

nels. These are the singlet-even (SE) and singlet-odd (SO) 

channels denoted by 
1
S0 and 

1
P1 respectively. The triplet even 

(TE) and tensor-even (TNE) components are picked from the 

coupled 
3
S1 - 

3
D1 channel. The triplet-odd (TO), tensor-odd 

(TNO) and the two components of the spin-orbit force are 

defined as [27]: 

𝑉(𝑇𝑂) = 𝑉(3𝑃0) + 2𝑉(𝐿𝑆𝑂) + 4𝑉(𝑇𝑁𝑂)    (12) 

𝑉(𝑇𝑁𝑂) = −
5

72
[2𝑉(3𝑃0) − 3𝑉(3𝑃1) + 𝑉(3𝑃2)]  

𝑉(𝐿𝑆𝑂) = −
1

12
[2𝑉(3𝑃0) + 3𝑉(3𝑃1) − 5𝑉(3𝑃2)]  

𝑉(𝐿𝑆𝐸) =
1

3
[𝑉(𝑇𝐸) − 2𝑉(𝑇𝑁𝐸) − 𝑉(3𝐷1)]  

3. The Approximate Effective NN 

Interaction 

This Section is devoted to the definition of the effective NN 

interaction for nuclear matter calculation and finite nuclei 

studies. 

The effective nucleon-nucleon interaction has three poten-

tial components which are the central (VC), spin-orbit (VLS) 

and tensor (VT) components [1, 2]. These are expressed as 

follows: 

𝑉𝐶 = ∑ 𝑉𝑘𝑌 (
𝑥𝑖𝑗

𝑅𝑘
)𝑘               (13) 

𝑉𝐿𝑆 = ∑ 𝑉𝑘𝑌 (
𝑥𝑖𝑗

𝑅𝑘
) 𝐿 ∙ 𝑆 𝑘   

𝑉𝑇 = ∑ 𝑉𝑘𝑥𝑖𝑗
2 𝑌 (

𝑥𝑖𝑗

𝑅𝑘
) 𝑆𝑖𝑗 𝑘   

where 𝑌 (
𝑥𝑖𝑗

𝑅𝑘
) is a Yukawa potential function of the form: 

𝑌 (
𝑥𝑖𝑗

𝑅𝑘
) =

𝑒𝑥𝑝(−
𝑥𝑖𝑗

𝑅𝑘
)

(
𝑥𝑖𝑗

𝑅𝑘
)

            (14) 

𝑉𝑘 in equations (13) are the strengths of the effective in-

teraction to be determined by fitting the two-body matrix 

elements of Equation (11) to those of a sum of Yukawa func-

tions calculated in a harmonic oscillator basis with different 

ranges; 𝑅𝑘 are the ranges which are chosen to be 0.25, 0.40, 

0.70 and 1.414 fm [1, 27]; and 𝑥𝑖𝑗  is the separation between 

the i and j nucleons. 

The central potential, VC is purely radial, depending only on 

the coordinate x of the two nucleons [28, 29]. For this com-

ponent, the ranges used are R1= 0.25, R2 = 0.40 and R3 = 1.414 

fm [1, 27]. The third and longest range of the potential cor-

responds to the exchange of a π-meson, which represents the 

one-pion exchange potential (OPEP), the second is meant for 

the simulation of multiple pion exchange and the third is 

chosen to improve the fit [27]. 

The tensor potential, VT is non-central and depends on the 

relative position vector, x and the relative spin orientations, S1 

and S2. The tensor operator S12 in the potential has the form 

shown in Equation (9). The ranges for the computation of this 

component are R1 = 0.40 and R2 = 0.7 fm. 

The spin-orbit potential is consequent upon the interaction 

between the orbital angular momentum L and spin angular 

momentum S represented by L∙S. The potential arises from 

the coupling of L and S to give the total angular momentum J 
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given by the equation: 𝐽2 = (𝐿 + 𝑆)2 = 𝐿2 + 𝑆2 + 2𝐿 ∙ 𝑆. 

The spin-orbit force has an expectation value proportional to 

[28, 29]: 2〈𝐿 ∙ 𝑆〉 = 𝑗(𝑗 + 1) − 𝑙(𝑙 + 1) − 𝑠(𝑠 + 1) , where 

𝐿 = √𝑙(𝑙 + 1),  𝑆 = √𝑠(𝑠 + 1),  𝐽 = √𝑗(𝑗 + 1). Since the 

spin-orbit force has a short range, the ranges chosen for the 

spin-orbit potential are R i = 0.25 and R 2 = 0.40 fm [1, 27]. 

As presented in Section 2, the effective interaction derived 

herein is based on the LOCV method with the two-body ma-

trix elements of Equation (11) fitted to a sum of Yukawa 

functions, resulting in interaction strengths, which are sepa-

rated into various angular momentum channels; namely, the 

singlet-even (SE), singlet-odd (SO), triplet-even (TE), tri-

plet-odd (TO) along with spin-orbit and tensor channels. This 

is shown in the results presented in Section 4. This procedure 

has been used to construct the popular G-matrix-based 

M3Y-Reid [1] and M3Y-Paris [27] as well as the B3Y-Fetal [2] 

derived from LOCV approach. These effective interactions 

have been successfully used in various nuclear matter [11, 12, 

17] and nuclear reaction [13-16] studies. Similarly, the new 

interaction will hopefully, subsequently be put to use in nu-

clear matter and nuclear reactions so as to determine its per-

formance strength in comparison with the other effective 

interactions. 

4. Results and Discussion 

In this work, an approximate effective interaction for nu-

clear matter and finite nuclei studies has been derived from 

the basic nucleon-nucleon (NN) force via the intermediary of 

a representative set of matrix elements based on the Reid93 

potential using the lowest order constrained variational ap-

proach (LOCV). The matrix elements were computed for the 

nuclear system A = 16 in a harmonic oscillator basis, with ћω 

= 14.0 MeV, and fitted to a sum of Yukawa terms to determine 

the strengths of the effective interaction in the various angular 

momentum channels. In all, the results presented here involve 

eight angular momentum channels, which are SE, SO, TE and 

TO (central); TNE and TNO (tensor); and LSE and LSO 

(spin-orbit) channels. The relative matrix elements are pre-

sented in Table 1, whereas their accompanying strengths of 

interaction are displayed in Table 2. Generally, the results of 

the present calculation are shown to demonstrate good 

agreement with the G-matrix results [1, 27]. 

Table 1. Calculated Matrix Elements for A = 16, ћω = 14.0 MeV and 𝛼 = 0.05. 

SE    TE  

(S/S) n = 0 1 2 (S/S) n = 0 1 2 

n’ = 0 -7.69 -6.75 -5.49 n’ = 0 -10.50 -8.59 -6.49 

 (-6.64) (-5.41) (-3.80)  (-9.93) (-8.84) (-6.81) 

1  -6.63 -5.60 1  -8.32 -6.76 

  (-4.73) (-3.30)   (-7.84) -5.71) 

2   -4.96 2   -6.03 

   (-2.23)    (-3.76) 

SO    TO    

(P/P) n = 0 1 2 (P/P) n = 0 1 2 

n’ = 0 2.54 2.66 2.61 n’ = 0 0.52 0.62 0.72 

 (2.52) (2.37) (2.11)  (-0.08) (-0.23) (-0.09) 

1  3.56 3.74 1  0.94 1.14 

  (3.03) (3.00)   (-0.24) (-0.05) 

2   4.30 2   1.45 

   (-2.23)    (0.04) 

TNE    TNO    

(S/D) n = 0 1 2 (P/P) n = 0 1 2 

n’ = 0 -5.07 -7.06 -8.22 n’ = 0 0.71 0.70 0.61 

 (-5.76) -8.12) (-9.71)  (0.78) (0.75) (0.63) 
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SE    TE  

(S/S) n = 0 1 2 (S/S) n = 0 1 2 

1 -2.50 -4.84 -6.61 1  0.85 0.81 

 (-2.81) (-5.52)   (0.92) (0.87)  

2 -1.28 -2.77 -4.45 2   0.87 

 (-1.52) (-3.23) (-5.30)    (0.95) 

LSE    LSO    

(D/D) n = 0 1 2 (P/P) n = 0 1 2 

n’ = 0 -0.26 0.20 0.92 n’ = 0 -0.43 -0.74 -0.98 

 (-0.14) (-0.13) (-0.12)  (-0.60) (-0.89) (-1.06) 

1  0.30 0.74 1  -1.13 -1.45 

  (-0.18) (-0.21)   (-1.26) (-1.52) 

2   -0.96 2   -1.81 

   (-0.26)    (-1.84) 

The results in parentheses for SE, TE, TNE and LSO channels are the G-matrix results [1] while those in parentheses for the SO, TO, TNO and 

the LSE channels are the G-matrix results [27]. 

Table 2. Best-Fit Interaction Strengths (MeV) for A =16, ћω = 14.0 MeV and a = 0.05. The results in parentheses for SE, TE, TNE and LSO 

channels are the G-matrix results [1] while those in parentheses for the SO, TO, TNO and the LSE channels are the G-matrix results [27]. 

S/N Channel R1 = 0.25 fm R 2 = 0.40 fm R 3 = 0.70 fm R4 = 1.414 fm 

1 SE 15228.20 -5025.36  -10.463 

  (12455) -3835  (-10.463) 

2 TE 18258.78 -5800.38  -10.463 

  (21227) (-6622)  (-10.463) 

3 SO -17.92 1465.22  31.389 

  (-1418) (950)  (31.389) 

4 TO 10066.15 -1048.60  3.488 

  (11345) (-1900)  (3.488) 

5 TNE  -1062.2 -26.71  

   (-1369) (-10.69)  

6 TNO  232.79 13.73  

   (-19.71) (27.06)  

7 LSE -111.27 3085.20   

  (-5101) (-337)   

8 LSO -5911.92 93.19   

  (-2918) (-483)   
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In the central channels, the computed two-body matrix 

elements for SE, TE and SO are shown in Table 1 to be in a 

better agreement with the G-matrix than the TO matrix ele-

ments which are much larger than their G-matrix counterparts. 

The central-even components, being attractive and in good 

agreement with the results [27], are seen to exhibit the same 

trend of variation, in terms of magnitude, as one goes from the 

lower-node quantum numbers (n’, n) = (0, 0) to higher ones 

(n’, n) = (2, 2), but only the TE channel is affected by the 

tensor correlations (a = 0.05) believed to be responsible for 

the negative sign of the matrix elements. Concerning the 

central-odd components, the big difference between the TO 

matrix elements and their G-matrix counterparts is traceable 

to the different computational approach used for their evalu-

ation in the present work. 

As regards the tensor channels, the TNE matrix elements 

are affected by the tensor correlations; and they are found to 

be attractive and stronger than their repulsive TNO counter-

parts in acceptable agreement with the G-matrix results [1, 27]. 

It is noteworthy that the observed agreement is indicative of 

the reliability of the method used herein. 

Pertaining to the spin-orbit channels, it is evident from Ta-

ble 1 that the LSO channel is in excellent agreement with the 

results of Anantaraman and co-researchers [27] as both matrix 

elements are strikingly similar in sign and magnitude. But, the 

LSE channel, being repulsive in the present calculations, is 

noticeably different from [27], with matrix elements that are 

considerably larger than the latter. 

The interaction strengths presented in Table 2 have resulted 

from a least squares fitting of the calculated two-body matrix 

elements to the oscillator matrix elements of a Yukawa sum in 

the central, tensor and spin-orbit channels respectively. The 

ranges of 0.25, 0.40, 0.70 and 1.414 fm, theoretically moti-

vated, were chosen in conformity with the potential for ine-

lastic scattering [1], with the one-pion exchange potential 

(OPEP) strength imposed on the 1.414 fm part of the central 

interaction as prescribed by the meson theory (exchange 

model) of nuclear forces. As shown in Table 2, the results of 

the present work are in impressive agreement with those of the 

G-matrix [1, 27] in most of the reaction channels. This gives 

hope that the new effective interaction promises to be a reli-

able tool for nuclear matter and nuclear structure studies. 

Efforts will be made to verify this quantitatively in the sub-

sequent papers. 

5. Conclusion 

Based on the LOCV approach, with the Reid93 nucle-

on-nucleon potential folded with two-body correlation 

functions, an approximate effective interaction has been 

derived herein. Comparing the effective interaction with its 

G-matrix counterparts in the various angular momentum 

channels, it has been found to demonstrate excellent 

agreement with them. This success paves the way for us to 

apply the new effective interaction to nuclear structure 

studies in subsequent papers. 

Abbreviations 

NN Nucleon Nucleon 

LOCV Lowest Order Constrained Variational 

RFM Relativistic Mean Field 

EFT Effective Field Theory 

QCD Quantum Chromodynamics 

HF Hartree-Fock 

M3Y Michigan-3-Yukawa 

SE Singlet Even 

SO Singlet Odd 

TE Triplet Even 

TNE Tensor Even 

TNO Tensor Odd 

LSE Spin-Orbit Even 

LSO Spin-Orbit Odd 

OPEP One-Pion Exchange Potential 
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