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Abstract: MATLAB, which stands for Matrix Laboratory, is a software package developed by Math Works, Inc. to facilitate 

numerical computations as well as some symbolic manipulation. It strikes us as being slightly more difficult to begin working 

with it than such packages as Maple, Mathematica, and Macsyma, though once you get comfortable with it, it offers greater 

flexibility. The main point of using it is that it is currently the package you will most likely found yourself working with if you 

get a job in engineering or industrial mathematics. So we found that the Matlab method in differential equations is very 

important and useful mathematical tools which help us to solve and plot differential equations. The aims of this paper is to 

solve Lagrange’s Linear differential equations and compare between manual and Matlab solution such that the Matlab solution 

is one of the most famous mathematical programs in solving mathematical problems. We followed the applied mathematical 

method using Matlab and we compared between the two solutions whence accuracy and speed. Also we explained that the 

solution of Matlab is more accuracy and speed than the manual solution which proves the aptitude the usage of Matlab in 

different mathematical methods. 
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1. Introduction 

The derivative ��/�� of a function � = ∅(�)  is itself 

another function ∅	(�) found by an appropriative rule. The 

function � = 
�.
��
 is differentiable on the interval (−∞,∞), 

and the chain rule its derivative is ��/�� = 0.2	�
�.
��
if we 

replace 
�.
��
on the right- hand side of the last eqution by the 

symble�, the derivative becomes. 

��
�� = 0.2	��                                    (1) 

Now imagine that a friend of yours simply hands you 

equation (1) you have no idea how it was constructed - and 

asks, what is the function represented by the symbol �? You 

are now face with one of the basic problems in the research. 

How do you solve such an equation for the unknown function 

� = ∅(�). [1] 

MATLAB, which stands for Matrix Laboratory, is a 

software package developed by Math Works, Inc. to facilitate 

numerical computations as well as some symbolic 

manipulation. It strikes me as being slightly more difficult to 

begin working with than such packages as Maple, 

Mathematica, and Macsyma, though once you get 

comfortable with it, it offers greater flexibility. The main 

point of using it in M442 is that it is currently the package 

you will most likely find yourself working with if you get a 

job in foe example engineering. [13] 

2. Differential Equations 

Definition (2.1): A differential equation involving ordinary 

derivatives of one or more dependent variable with respect to 

a single independent variable is called an ordinary 
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differential equation. [12] 

Definition (2.2): A linear ordinary differential equation of 

order �, in dependent variable � and the independent variable 

�, is an equation which is in, or can be expressed in, the form  

�(�) ��

��� + �1(�) + ���


����
 + ⋯+ 

�� − 1(�) ���� + ��(�)� = �(�) 

Where �ₒ is not identically zero. [4] 

3. Lagrange’s Linear Equation 

The partial differential equation of the Pp + Qq=R where 

P, Q, R are functions of x, y, z is the standard from the linear 

partial differential equation of the order one and it called 

Lagrange’s linear Equation. [2] 

3.1. Solution of Lagrange’s Linear Equation 

In by eliminating an arbitrary function f from 

!(", #) = 0                                    (2) 

Connecting two functions u and v we get the partial 

differential equation 

$% + &' = (                                   (3) 

Where 

$ = )"
)� . )#)� − )#

)� . )")*  

& = )#
)� . )")* − )"

)� . )#)* 

And 

( = )"
)� . )#)� − )"

)� . )#)� 

Thus, equation (2) is the general of (3) and so we have to 

find the values of u and v. Let " = �	and # = �	be two 

equationswhere a and b are arbitrary constants. 

Differentiating them, we have 

)"
)� . �� + )"

)� . �� + )"
)* . �* = 0 

And
+,
+� . �� + +,

+� . �� + +,
+- . �* = 0 

Solving these, we have  

��
+.
+� . +,

+- − +,
+� . +.

+-
= ��

+.
+- . +,

+� − +.
+� . +,

+-
= �*

+.
+� . +,

+� − +.
+� . +,

+�
 

i.e. 

��
/ = ��

0 = �-
1                                      (4) 

Solution of the (4) differential equation are " = �	and# =
� 

Thus the solution of the given equation (2) it found and its 

!(", #) = 0 

Note that equations given by (4) are called Lagrange’s 

auxiliary equations or subsidiary equations. Working method: 

for the solution of the partial differential equation. 

$% + &' = ( 

From the auxiliary equations
��
/ = ��

0 = �-
1  

Find two independent integrals of auxiliary equation say 

" = �	And # = �. Then the general integral of the equation 

is given by !(", #) = 0when ! is an arbitrary function. [3] 

3.2. Geometrical Interpret of Lagrange’s Linear Equations 

Lagrange’s linear equation is 

$% + &' = (                                    (5) 

Which can be written as?  

$% + &' = ((−1) = 0 

We know that the d.c ´s of the normal at point on the 

surface !(�, �, *) = 0	are proportional to 

)!
)� : )!)� : )!)* 

=≫ −	)!)� 5)!)* :	− )!
)�6

)!
)* = −1 

=≫ )*
)� : )*)� = −1 =≫ %: ' = −1 

Hence, the geometrical interpretation of (5) is that they 

normal to ascertain surface is perpendicular to a line whose 

direction cosines are in the ratio	$: &: (. 

We saw that the simultaneous equations  

��
/ = ��

0 = �-
1              (6) 

Represented a family of curves that the tangent at point 

had direction cosine in the ratio $: &: ( 

And that	!(", #) = 0 represented a surface through such 

curves, where 	7 = 89�: . And # = 89�:Are two particular 

integrals of (6) through every point of such a surface passes 

curve of the family, lying wholly on the surface. Hence, the 

normal to this surface at any point must be perpendicular to 

the tangent to this curve, I. e, perpendicular to a line whose d 

c´s are proportional to $: &: ( this is just what is required by 

the partial differential equation.  

Thus, equation (5) and (6) define the same of surface and 

are thus equivalent. [5] 

Example (3.2.1): Solve(*; − 2�* − �;)% + (�� + *�)' =
�� − *� 

Solution:  

The subsidiary equations are 

��
*; − 2�* − �; = ��

�� + *� = �*
�� − *� 
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Taking �, �. *	as multiples, we have  

Each fraction=
���<���<-�-

�  

∴ ��� + ��� + *�* = 0 

Integrating, �; + �; + *; = 8
 

Again, taking the last two members, we have 

��
� + * = �*

� − * 

=≫ (� − *)�� = (� + *)�* 

=≫ ��� − (*�� + ��*) − *�* =0 

Integrating, we have  

�; − 2�* − *; = 82 

∴The general solution is  

!(�; + �; + *;, �; − 2�* − *;) = 0. [7] 

4. Multiple Method of Differential 

Equation 

We start discussing one of the more common methods for 

solving basic partial differential equations. The method of 

separation of variables cannot always be used and even when 

it can be used it will not always be possible to get much past 

the first step in the method. However, it can be used to easily 

solve the 1-D heat equation with no sources, the 1-D wave 

equation, and the 2-D version of Laplace’s equation, 

∇;" = 0. 
In order to use the method of Separation of variables we 

must be working with a linear homogenous partial 

differential equation with linear homogenous boundary 

conditions at this point we’re not going to worry about the 

initial condition (s). 

Because the solution that we initial get will rarely satisfy 

the initial condition (s). As we’ll see however there are ways 

to generate a solution that will satisfy initial condition (s) 

provided they meet same fairly simple requirements. [8] 

The method of Separation of variables relies upon the 

assumption that a function of the form, 

"(�, �) = ∅(�)?(@)                             (7) 

Will be a solution to a linear homogenous partial 

differential equation in x and t. this is called a product 

solution and provided the boundary conditions are also linear 

and homogenous this will also satisfy the boundary 

conditions. However, as noted. Above this will only rarely 

satisfy the initial condition. [10] 

After all there really isn’t. As we’ll see it works because it 

will reduce our partial differential equation down to two 

ordinary differential equation and provided we can solve 

those then we’re in business and the method will allow us to 

get a solution to the partial differential equation. So, let’s do 

a couple of examples to see how this method will reduce a 

partial differential equation down to two ordinary differential 

equations. [11] 

Example (4.1.1): Use Separation of variables on the 

following partial differential equation. 

)"
)@ = A );"

)�; 

"(�, 0) = !(�) )")� (0, @) = 0	 )")� (B, @) = 0	 
Solutions: 

In this case we’re looking at the heat equation with no 

sources and perfectly insulated boundaries. So, we’ll start off 

by again assuming that our product solution will have the 

form, 

"(�, @) = ∅(�)?(@) 

And because the differential equation itself hasn’t changed 

here we will get the same result from plugging this in as we 

did in the previous example so the two  

Ordinary differential equations that we’ll need to solve are,  

�?
�@ = −AC? �;∅

��; = −C∅ 

Now, the point of example was really to deal with the 

boundary conditions so let’s plug the product solution into 

them to get, 

)D?(@). ∅(�)E
)� (0, @) = 0	 )D?(@). ∅(�)E

)� (B, @) = 0	 

?(@) �∅�� (0) = 0	?(@) �∅�� (B) = 0	 
Now, just as with the first example if we want to avoid the 

trivial solution and so we can’t have ?(@)=0for every t and 

so we must have, 

�∅
�� (0) = 0	 �∅�� (B) = 0 

Here is a summary of what we get by applying separation 

of variables to this problem 

�?
�@ = −AC? �;∅

��; = −C∅ = 0 

�∅
�� (0) = 0	 �∅�� (B) = 0 

Next, let’s see what we get if use periodic boundary 

conditions with the heat equation. [12] 

Example (4.1.2): Use Separation of variables on the 

following partial differential equation. 

)"
)@ = A );"

)�; 

"(�, 0) = !(�)"(−B, @) = "(B, @) )")� (−B, @) = )"
)� (B, @) 
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Solutions: 

First note that these boundary conditions really are 

homogenous boundary conditions. If we write them as, 

"(−B, @) − "(B, @) )")� (−B, @) − )"
)� (B, @) 

It’s a little easier to see. 

Now, again we’ve done this partial differential equation so 

we’ll start off with, 

"(�, @) = ∅(�)?(@) 

And the two ordinary differential equations that we’ll need 

to solve are,  

�?
�@ = −AC? �;∅

��; = −C∅ 

Plugging the product solution into the re written boundary 

conditions gives, 

?(@)∅(−B) − ?(@)∅(B) = ?(@)F∅(−B) − ∅(B)G = 0 

?(@) �∅�� (−B) − ?(@) �∅�� (B) = ?(@) 5�∅�� (−B) − �∅
�� (B)6 = 0 

And we can see that we’ll only get non-trivial solution if,  

∅(−B) − ∅(B) = 0	 �∅�� (−B) −	�∅�� (B) = 0 

∅(−B) = −∅(B) �∅�� (−B) = �∅
�� (B) 

So, here is what we get by applying Separationof variables 

of variables to this problem. 

�?
�@ = −AC? �;∅

��; + C	∅ = 0	 

∅(−B) = −∅(B) �∅
�� (−B) = �∅

�� (B). [9] 

5. Matlab Program 

5.1. Partial Differential Equations in One Spatial 

Dimension 

We will use MATLAB unction pdepe to solve initial-boundary 

value problems for parabolic and elliptic PDEs in one spatial 

dimension more precisely, pdepe solves PDEs of the form: 

8(�, @, ", "H, )"t = ��JD�J!(�, @, ", "H)E + :(�, @, ", "H), (�K , @) ∈ (�M , �N) × (@P , @f)                         (8) 

With initial- boundary conditions  

"(�, @R) = "9(�), �
 ≤ � ≤ �N,	 
%(�, @, ") + '(�, @)!(�, @, ", "H) = 0, !9T@R ≤ @ ≤ @! 

And 

� = �K , �N	                                     (9) 

Specifying constant m and functions 8, !, :, %, ',  we can 

solve various types of PDEs as we will use see. [12] 

5.2. Single Parabolic PDEs 

Consider the heat equation 

"t = "HH, (�, @) ∈ (0,1) × (0,1), 
"(�, 0) = �;, 0 ≤ � ≤ 1, 

"(0, �) = 0, 0 ≤ @ ≤ 1, 
"(1, @) = 1, 0 ≤ @ ≤ 1 

To solve this initial-boundary value problem, we need 

following steps:set the constant m in (4.4). Usuall ym=0, but 

other values of m can be useful. For example, if the solution 

u is radially symmetric in (� , the Laplace operator in 

spherical coordinates is  

∆" = T�J(TJ"V)r,	m=d-1. 

In our examples, m=0. 

≫ X = 0, 

1)  Define your PDE by specifying the functions 8, !, :	in 

(8). 

In our examples, we have 

8(�, @, ", "H) = 1, !(�, @, ", "H) = "H, :(�, @, ", "H) = 0. 
Hence a M-File function describing the above is 

%heateqn. m: defines the heat equation for “pdepe” 

Function F8, !, :G=heateqn (�, @, ", �"��) 

8 = 1; 
! = �"��; 

: = 0; 

�� 

2) Define the initial condition "H in (9). 

In our example, "H(�) = �;  so that a M-File function 

describing it is% icfun1.m: defines an initial condition for 

“pdepe”  

Function "[=icfun1 (�) 
"[ = �⋀2; 


�� 

3) 4-Define the boundary conditions by specifying the 

function %, ' in (9). Not that the Aux function ! 

isalready defined. 

In our example, we have. 

%(9, @, ") = ", %(1, @, ") = " − 1,		 
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'(0, @) = '(1, @) = 0. 
Hence a MATLAB function describing the boundary 

conditions is % bcfun 1: m defines a boundary conditions for 

“pdepe” 

FunctionF%
, '
, %] , ']G=bcfun1(�
, "
, �] , "] , @) 

%
 = "
; 
'
 = 0; 

%] = "] − 1;	 
'] = 0, 

�� 

Not that %1, '1 and"1 stand for%(�K , @, ") and "(�K , @) 
Respectively. Other variable are defined similarly. 

4) Define space mesh and time interval. 

≫ � =Linspace(0,1,20); 
≫ @ =Linspace (0,1,10); 

5) Finally use the function pdepe to solve the PDE. 

" =pdepe (X,@	ℎ
ateqn,	@	icfun1,	@ bcfun1,	�, @); 
The " is a 10 − � − 20matrix; each row of u  

represents a solution at a specific time. 

6) to observe evolution of the solution, we can use the 

function surf. 

≫surf	(�, @, ") 
To plot the solution profile at a specific time, we need 

access arrow of ". For example, we can  

≫plot (�, "(
��, : ))[6] 

5.3. Solution of Lagrange’s Linear Equation by Matlab 

Example (5.3.1) Solve(*; − 2�* − �;)% + (�� + *�)' =
�� − *� 

Solution: 

function f=Lagran 

symsxyzdxdydz 

f1=x*dx+y*dy+z*dz 

C1=int(x)+int(y)+int(z) 

f2=(y*dy-(z*dz+y*dy)-z*dz) 

C2=int(y)-int(z)-int(y)-int(z) 

c=c1+c2 

Result 

>>lagran 

f1=dx*x + dy*y + dz*z 

C1=x^2/2 + y^2/2 + z^2/2 

f2=-2*dz*z 

C2=-z^2 

C=x^2/2 + y^2/2 - z^2/2 

6. Compare Between Manuals Solutions 

and Matlab Solutions 

After implementing all the steps described in this paper, 

we evaluated the Matlab solutions and the final results were 

discussed. Results obtained from the Matlab solutions were 

compared with the results obtained by manuals solutions. We 

made it clearer that the Matlab solutions results which 

presents it noticed that there was the difference between the 

results of the Manuals solutions and Matlab solutions. 

7. Results 

We found the following results: The paper explained that 

there was slight difference between manual and Matlab 

solutions in solving Lagrange’s Linear differential equations 

using Matlab due to accuracy in Matlab. Also possibility of 

solving Lagrange’s linear differential equations using Matlab 

solution is more speed and accurate than the manual solution. 
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