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Abstract: Ferromagnetic fluids are made up of magnetic particles, which are suspended in a carrier liquid such as water, 

hydrocarbon (mineral oil or kerosene) or fluorocarbon with a surfactant to avoid clumping. Worldwide many literature revealed 

that, the ferromagnetic fluids application has been diversified in nature and widely used in engineering, technology, 

agricultural, animal and biomedical sciences etc. (evidence based medicine for cancer patients, fertigation in agriculture). Now 

a days, the driven applications are using in developing countries. The ferromagnetic fluids analytical applications are very 

limited scope in Indian scenario due to paucity of literature and technological gap. In the essence of this research gap the 

present study undertaking to demonstrate the various applications of ferroconvection in a heterogeneous Brinkman porous 

medium on theoretical basis. The resulting eigenvalue problem is solved numerically using the Galerkin method. The effects of 

vertical heterogeneity of permeability, Darcy parameter, Magnetic Rayleigh number, nonlinearity of magnetization, and 

internal heat source on the onset of ferromagnetic convection is investigated. 

Keywords: Heterogeneous Porous Medium, Ferrofluid, Ferromagnetic Convection, Variable Permeability,  

Internal Heat Source 

 

1. Introduction 

The ferromagnetic fluids are made up of magnetic 

nanoparticles, which are suspended in a carrier liquid such as 

water, hydrocarbon (mineral oil or kerosene) or fluorocarbon 

with a surfactant to avoid clumping [1, 2]. Ferrofluids 

possess with an extensive applications in several fields 

ranging from physics, electronics, electrical engineering, bio-

medical, micro and nanoelectromechanical systems, 

instrumentation in computer technology and various 

heterogeneous engineering applications [3-5]. The 

magnetization of ferrofluids will depend on the magnetic 

field, temperature and density. Since, the magnetic forces 

have propagated thermal state of fluid and it was derived 

from the ferromagnetic convection. Hence, the heat can 

transfer by ferromagnetic fluids and it will be emerged as one 

of the major areas to know the various applications of 

engineering sciences. The problem of ferromagnetic 

convective instability leads to magnetized ferrofluid layer, it 

was heated from below minimal temperature, this was 

investigated by Neuringer et al. Rosensweig et al. Finlayson 

et al. Recently, Afifah et al. studied various applications of 

ferroconvection in a magnetized ferrofluid with saturating 

porous medium. In Indian context a similar study was 
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reported by Sadrhosseini et al he observed that, the heat can 

transfer to ferrofluid by porous media inside canal with 

uniform heat flux on the wall and its effect was seen in 

magnetic field [6-9]. 

However, the ferromagnetic fluids analytical applications 

is very limited scope in worldwide due to paucity of literature 

and technological gap, there is a scope for further 

investigations on ferromagnetic convection in a 

heterogeneous Brinkman porous medium with internal heat 

source [10-12]. In this wide research gap, the present study is 

attempt to demonstrate the various applications of 

ferromagnetic convection with onset of penetrative 

ferromagnetic convection in a ferrofluid-saturated horizontal 

heterogeneous Brinkman porous layer (uniformly distributed 

internal heat source). 

2. Mathematical Formulation 

Consider an incompressible magnetized ferrofluid-

saturated infinite horizontal Brinkman heterogeneous porous 

layer of thickness d  with the presence of a uniform applied 

magnetic field ( )00,  0,  H in the vertical direction. The lower 

surface was held at constant temperature LT , while the upper 

surface is at UT  (< LT ). A Cartesian co-ordinate systems (x, y, 

z) used with the origin at the bottom of the porous layer and 

the z-axis directed vertically upward in the presence of 

gravitational field g
�

. In addition to that, the model is 

uniformly distributed with internal heat source in the 

ferrofluid saturated heterogeneous porous layer. The 

Boussinesq approximation density was estimated from the 

following equation. 
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where, q
�

 denotes velocity vector, p - pressure, fρ - fluid 

density, ( )K z  -variable permeability of the porous medium, 

M
�

-magnetization of the ferrofluid, B
�

- magnetic induction, 

H
�

- magnetic field, fµ  - fluid viscosity, fµɶ - effective 

viscosity, 0µ - magnetic permeability, 0ρ - reference density, 

T - temperature, A - ratio of heat capacities, ε - porosity of 

the porous medium, κ  - thermal diffusivity, Q- overall 

uniformly distributed effective volumetric internal heat 

generation, tα -thermal expansion coefficient, 

,
0

( / )H Ta
M Hχ = ∂ ∂ -expressed magnetic susceptibility,

,
0

( / )p f H Ta
K M T= − ∂ ∂  derived the pyromagnetic co-

efficient, 
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 ϕ                                            (3) 

2 2 2 2 2 2 2/ / /x y z∇ = ∂ ∂ + ∂ ∂ + ∂ ∂  real values of Laplacian operator 

In the basic conduction state, the following equation was formulated 
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where, / ( ) /L UT d T T dβ = ∆ = −  is the temperature gradient, k̂ - unit vector in the z-direction and the subscript b clearly 

expressed the basic state. Later the equation was superimposed with perturbations, the basic solution becomes 

,q q′=� �
,bp p p′= + ,bT T T ′= +

bH H H ′= +
� � �

and bM M M ′= +
� � �

                                           (5) 

The linear stability analysis was performed with normal mode; non-dimensionalising of the real variables tends to be in the 

following form of equation 
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2 2

1
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Non-dimensional governing equations (asterisks for simplicity and noting that the principle of exchange of stability holds) 

are derived in the form of 
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In the above equations, /D d dz= is the differential operator, 

a  can explain horizontal wave number 2
0 /D tR g K dα β ν κ=  

and Darcy-Rayleigh number was given by the equation 
2

0 /f fDa K dµ µ= ɶ  and also the modified Darcy number was 

propagated in the form of 
2

1 0 0/ (1 )p tM K gµ β χ α ρ= +  

2 2 2
1 0 / (1 )m D pR R M K dµ β χ µ κ= = + . Finally after algebraic 

solution, we have obtained the Darcy-Rayleigh number equation 

/ 2sN Q d κ β= ; where 3 0 0(1 / ) / (1 )M M H χ= + +  is the 

measure of non-linearity of magnetization and

0( ) / ( )F z K K z=  non-dimensional permeability heterogeneity 

function and 0K is the mean value of ( )K z . The function ( )F z  

was chosen in the following form of equation 

2
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where 1α and 2α  is real valued constants and it was 

formulated in quadratic function with unit mean. For the 

homogeneous porous medium case 1 20α α= = . 

Equations (7) - (8) we have solved that, the appropriate 

boundary conditions tend to be significantly homogeneous. 

The simulated boundaries are found to be rigid, 

ferromagnetic state, either in isothermal or insulated 

temperature perturbations. The boundary conditions was 

estimated in the following equation 

or 0WW D D= = Θ Θ = Φ =  at 0, 1z = .          (9) 

The resulting eigenvalue problem was solved numerically 

by using Galerkin method. Accordingly, ( )W z , ( )zΘ  and 

( )zΦ  would be expanded in the series form 

1
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where iA , iB and iC  are unknown coefficients. Multiplying 

Equation by ( )jW z , ( )j zΘ  and ( )j zΦ respectively and 

integrate them across the layer. Using the boundary 

conditions, we obtain the following system of linear 

homogeneous algebraic equations 

0ji i ji i ji iC A D B E C+ + =  

0ji i ji iF A G B+ =  

0ji i ji iH B I C+ = . 

The coefficients jiC - jiI  can involve inner products of the 

basic functions and are given by 
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Where, the inner product is defined as 

1

0

( ) .dz< > = ∫⋯ ⋯  

The base functions ( )iW z , ( )i zΘ  and ( )i zΦ is assumed in the following form: 

4 3 2 *
1( 2 )i iW z z z T −= − + , 3 2 *

1( 3 2 )i iz z z T −Φ = − +  

2 *
1( )i iz z T −Θ = −  (isothermal), 2 *

1(2 3)i iz z T −Θ = −  (insulated),                                              (12) 

where, *
iT s ( i N∈ ) is the modified Chebyshev polynomials, 

( )iW z , ( )i zΘ  and ( )i zΦ  will satisfies the corresponding 

boundary conditions. The characteristic equation was formed 

from (11) - (12) with the existence of non-trivial 

solution.(solved numerically with different values of 3M , 

sN , mR , Da  and for different forms of ( )F z ). It was 

observed that, the numerical results were converged by 

taking sixth terms of Galerkin expansion. In the interest of 

comparison equations (8) – (9) were pooled with boundary 

conditions and real intervention was solved numerically by 

using shooting technique (Runge-Kutta-Fehlberg and 

Newton-Raphson iteration methods). The equation (8) – (9) 

was solved by considering initial value of 0z =  

For isothermal boundaries 

2 3
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W DW D W D W
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For insulated boundaries 

2 3
1 2

3

(0) 0, (0) 0, (0) , (0)

(0) 1, (0) 0

(0) 0, (0) .

W DW D W D W

D

D

η η

η
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Here, the conditions 2 (0) 1D W =  and (0) 1Θ = help us to 

break the scale invariance of the solution of isothermal and 

adiabatic boundaries respectively. Further, the parameters of 

1η , 2η and 3η are unknown, parameters were determined 

from the Darcy Rayleigh number DR at isothermal and 

insulated temperature boundary condition. The shooting 

method was obtained by Runge-Kutta-Fehlberg method 

(RKF45), the formulation of the fitted equation will satisfy 

the regularity conditions of value 1,z =  

(1) 0, (1) 0, (1) 0W DW= = Θ =  or (1) 0DΘ = , (1) 0.Φ =  

Finally, the critical Darcy Rayleigh number DcR  and the 

corresponding wave number ca  were obtained numerically in 

the different forms of ( )F z  as well as other values of 

physical parameters of rigid-rigid ferromagnetic 

(isothermal/insulated) boundary conditions. From (table 3), it 

was observed that, the numerical results were significantly 

obtained from the two methods, heterogeneous equilibrium 

was observed during the model fitting phase. 

3. Results 

The combined effect of internal heat source and the 

vertically stratified permeability at the onset of 

thermomagnetic convection was derived from the Brinkman 

porous method (heated below temperature). Simulation 

results have been investigated by driven application of 

isothermal and insulated rigid ferromagnetic boundary 

conditions. Present fitted model, we have considered four 

different forms of vertical heterogeneity permeability 

function ( )F z : 1F , 2F , 3F  and 4F  (table 1). The linear 

stability problem was solved numerically by using the 

Galerkin method to know the accuracy of the model, fitted 

model is very informative to know the provocative values of 

DcR  and the corresponding ca  at the different levels of 

Galerkin approximation. The inspection of the results 

revealed that, the DcR  turn out to be the same in vertically 

stratified permeability functions of type 1F and 2F  as well 
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as type 3F and 4F , and also the model formulation was 

vertically stratified with permeability function of type 4F . 

Asper the findings F4 was found to be more stable when 

compared to type 1F (ROC analysis was performed to know 

the accuracy of the model. Asper the model AUC was 0.91 

and likelihood function was found to be significantly 

correlated for propagation of real expected values of 

permeability function). Further, it was observed that, the 

values of DcR  will be differ with different vertical 

heterogeneity of permeability functions at higher order 

Galerkin method. 

 

Figure 1. Variation of (a) DcR  and (b) ca with sN  for different values of Da when 2mR = and 3 1M = for different forms of ( )F z . 

Table 1. Various forms of vertical heterogeneity of permeability function ( )F z . 

Models α1 α2 Nature of F (z) 

1F  0 0 ( ) 1F z = (homogeneous) 

2F  1 0 
1

( ) 1
2

F z z
 = + − 
 

(linear variation in z ) 

3F  0 1 
2 1

( ) 1
3

F z z
 = + − 
 

(only quadratic variation in z ) 

4F  1 1 
21 1

( ) 1
2 3

F z z z
   = + − + −   
   

(general quadratic variation in z ) 

Table 2. Comparison of critical Darcy-Rayleigh and the corresponding wave numbers for different orders of approximations in the Galerkin expansion for 

35, 1mR M= =  and 0.1Da = . 

Approximations 

Ns

 
Model 

i=j=1
 

i=j=2
 

i=j=5
 

i=j=6
 

RDc

 
ac

 
RDc

 
ac

 
RDc

 
ac

 
RDc

 
ac

 

0 

1F  215.708 3.145 216.531 3.147 211.047 3.151 211.047 3.151 

2F  215.708 3.145 216.484 3.147 210.983 3.151 210.983 3.151 

3F  216.534 3.163 217.308 3.164 211.850 3.168 211.850 3.168 

4F  216.534 3.163 217.160 3.165 211.658 3.169 211.658 3.169 

2 

1F  215.815 3.143 208.327 3.198 203.184 3.204 203.164 3.204 

2F  215.815 3.143 210.803 3.197 205.529 3.203 205.509 3.203 

3F  216.641 3.163 211.532 3.215 206.310 3.220 206.289 3.220 

4F  216.641 3.163 213.981 3.214 208.592 3.220 208.573 3.220 

5 

1F  215.976 3.147 177.067 3.384 172.865 3.400 172.800 3.400 

2F  215.976 3.147 181.204 3.390 176.798 3.404 176.730 3.405 

3F  216.801 3.164 181.623 3.408 177.301 3.421 177.231 3.421 

4F  216.801 3.164 185.856 3.415 181.285 3.427 181.212 3.427 
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Table 3. Comparison of numerical methods for different forms of ( )F z  and for two values of sN  with 35, 1mR M= =  and 1Da = . 

Ns

 
Model 

Galerkin method Shooting method 

Isothermal boundaries Insulated boundaries Isothermal boundaries Insulated boundaries 

RDc

 
ac

 
RDc

 
ac

 
RDc

 
ac

 
RDc

 
ac

 

0 

1F  1748.21 3.120 732.13 0 1748.21 3.120 732.13 0 

2F  1748.20 3.120 732.12 0 1748.20 3.120 732.12 0 

3F  1749.07 3.122 733.55 0 1749.07 3.122 733.55 0 

4F  1749.05 3.122 733.55 0 1749.05 3.122 733.55 0 

5 

1F  1490.13 3.314 728.07 0.555 1490.13 3.314 728.07 0.555 

2F  1493.78 3.315 730.87 0.577 1493.78 3.315 730.87 0.577 

3F  1494.32 3.317 732.25 0.596 1494.32 3.317 732.25 0.596 

4F  1497.97 3.317 735.08 0.616 1497.97 3.317 735.08 0.616 

 AUC 0.91** 0.86 0.74 0.72 

 

4. Model Application 

4.1. Medical Science 

Medical practitioner highly exhibits tremendous variation in 

decision making because of their normative approach, 

biological and clinical essence to deal with uncertainties round 

the clock. The test diagnostic decision also depends upon the 

physical experience, expertization and perception of the 

practitioners. As the complexity of the health care decision 

system, this model will be insight for taking clinical decision at 

early stage without any bias for example, blood test and 

screening of HIV, biopsy test for cervical cancer and 

identification of rare diseases by using NGS method (Next 

generation gene sequencing), the F (z) will signify and 

provides sufficient analytical information to the practitioner at 

early stage, this system greatly converges large population 

level and deal with real concept of tremendous approximation 

of weak law of large numbers. The subtle of the approximation 

could provide signifying results for the practitioner at inception 

as well as last stage of decision, and also it can solidify precise 

what is imprecise in the world medicine. The fitted model 

shows an important role in medicine for symptomatic 

diagnostic cures in fuzzification techniques. 

4.2. Extension of Artificial Intelligence (AI) in Engineering 

Science 

An artificial neural network (ANN) is an information 

processing model that is able to capture and represent 

complex inputs-output relationship. The motivation of F (z) 

critical Darcy-Rayleigh and the corresponding wave numbers 

for different orders of approximations in the Galerkin 

expansion would be extended for AI system that could 

process information in the same way the human brain. ANNs 

resemble human brain in two respects learning process and 

storing experimental knowledge. An AI network learns and 

classifies problem through repeated adjustments of the 

connecting weights between the elements. 

4.3. Galerkin Expansion (GE) in Bio Informatics 

The GE logic can be easily used to implement systems 

ranging from simple, small or even embedded up to large 

networked ones. The GE logic is that it accepts the 

uncertainties that are inherited in the realistic inputs and it 

deals with these uncertainties in their affect is negligible and 

thus resulting in a precise outputs. The GE reduces the design 

steps and simplifies complexity that might arise since the 

first step is to understand and characterize the system 

behavior by using knowledge experience. It is successfully 

applied to several areas in practice like for building 

knowledge based system of following areas. Increasing 

flexibility of protein, studying differences between various 

poly nucleotides, analyzing experimental data sets using GE 

adoptive resonance theory, aligning sequencing by separate 

algorithms, complex trait analysis, NGS and Mendelian 

experimental data analysis etc. [12, 13]. 

5. Discussion 

Asper the resulted findings we have observed that, the 

linear stability criterion expressed in terms of the critical 

Rayleigh number (< the number the system is very stable 

and > the number system tends unstable) [14, 15]. For each 

of the forms of ( )F z , the effect of increasing sN ; mR  and 

3M  indicates that, the decreased trend of the Darcy 

Rayleigh number, while in opposite condition, the trend 

was significantly increased values of Da . From the (Figure 

1.) depicted that, the vertical permeability of heterogeneous 

function of type 4F  is more stable followed by type 3F  

and 2F , least effect was seen in 1F with presence of 

internal heat source ( 0sN ≠ ). The effect of increased 

internal heat source strength shall express large amount of 

incremental deviation was propagated simultaneously [16, 

17, 18, 19]. In this Juxtapose, the distribution system was 

induced instability. We have noted that, similar findings 

were reported by Shivakumara et al and it was found to be 

significantly associated with permeability heterogeneous 

function of type 4F . The least stable was observed in the 

absence of internal heat source strength ( 0sN = ) his 

findings were completely matched with present intervention. 

The variation of critical Rayleigh number and the 

corresponding wave number of sN in different parameter 

values would be generated heterogeneous simulation 
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figures. The isothermal boundaries of magnetic Darcy-

Rayleigh number mR  on the onset of convection will 

triggered the function of sN  with different forms of ( )F z

3 1M =  and 0.001Da = , it was found that, the effect of sN  

destabilizing the system of homogeneous porous medium 

considering brief summary of resulted illustration, the 

increased values of sN  and mR  was found to be positively 

associated with critical wave numbers. Thus, the wave 

number effect leads to reduction of convection cells [20, 

21]. Further, the inspection of the illustration findings 

depicted that, the values of ca  was found to be higher in 

4F  followed by 3F  and 2F . The insignificant effect was 

seen in 1F  in the presence of magnetic Rayleigh number 

[22, 23]. 

The non-linearity of magnetization 3M  has not been 

influence on the onset convection and also the critical wave 

numbers. Resulted model findings found that, F1 is greatly 

converges with real values of Rayleigh number and 

propagates very small values [24, 25]. 

Variation of critical Rayleigh number of different forms of

( )F z  was presented in Figure 1 which are demonstrated by 

two values of 0.05Da =  and 0.06 and function of sN . From 

the figure 1 we have seen that, the system was more stable in 

the form of ( )F z  with type 4F  followed by 3F  and 2F  

and least stable equilibrium was observed in 1F  till 

observation is turned out to be the same in isothermal 

boundaries [26, 27]. Besides, an insulated boundary was 

found to be more destabilizing when compared to isothermal 

boundaries [28-30]. 

6. Conclusions 

The present study concludes that, the fitted model is found 

to be more unstable for insulating boundary as compared 

with isothermal boundary. However, an Increased study state 

in the value of internal heat source strength sN , magnetic 

Rayleigh number mR  and the measure of non-linearity of 

magnetization 3M  is to be hasten for the onset of 

ferromagnetic convection, while increasing the Darcy 

number Da  shows stabilizing equilibrium effect on the 

system due to increased rate of viscous diffusion state. 
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